Home
Class 12
MATHS
The period of the function f(x)=c^((sin^...

The period of the function `f(x)=c^((sin^2x) +sin^2 (x+pi/3)+cosxcos(x+pi/3))` is (where `c` is constant)

A

1

B

`(pi)/(2)`

C

`pi`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the period of the function \[ f(x) = c^{\left(\sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cos \left(x + \frac{\pi}{3}\right)\right)} \] we will analyze the components of the function step by step. ### Step 1: Analyze the components of the function The function \( f(x) \) consists of three parts: \( \sin^2 x \), \( \sin^2 \left(x + \frac{\pi}{3}\right) \), and \( \cos x \cos \left(x + \frac{\pi}{3}\right) \). ### Step 2: Determine the period of \( \sin^2 x \) The function \( \sin^2 x \) has a period of \( \pi \). This is because \( \sin^2 x = \left(\sin x\right)^2 \) and the sine function itself has a period of \( 2\pi \), but squaring it reduces the period to \( \pi \). ### Step 3: Determine the period of \( \sin^2 \left(x + \frac{\pi}{3}\right) \) The function \( \sin^2 \left(x + \frac{\pi}{3}\right) \) also has the same period as \( \sin^2 x \), which is \( \pi \). The phase shift does not affect the period. ### Step 4: Determine the period of \( \cos x \cos \left(x + \frac{\pi}{3}\right) \) Using the product-to-sum identities, we can rewrite \( \cos x \cos \left(x + \frac{\pi}{3}\right) \): \[ \cos x \cos \left(x + \frac{\pi}{3}\right) = \frac{1}{2} \left(\cos(2x + \frac{\pi}{3}) + \cos \frac{\pi}{3}\right) \] The cosine function has a period of \( 2\pi \), and thus \( \cos(2x + \frac{\pi}{3}) \) has a period of \( \pi \). Therefore, \( \cos x \cos \left(x + \frac{\pi}{3}\right) \) also has a period of \( \pi \). ### Step 5: Combine the periods Since all three components \( \sin^2 x \), \( \sin^2 \left(x + \frac{\pi}{3}\right) \), and \( \cos x \cos \left(x + \frac{\pi}{3}\right) \) have the same period of \( \pi \), the overall function \( f(x) \) will also have a period of \( \pi \). ### Conclusion Thus, the period of the function \( f(x) \) is: \[ \text{Period} = \pi \]

To find the period of the function \[ f(x) = c^{\left(\sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cos \left(x + \frac{\pi}{3}\right)\right)} \] we will analyze the components of the function step by step. ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

The period of the function f(x)=sin((2x+3)/(6pi)) , is

The period of the function f(x)=|sin 3x|+| cos 3x| , is

The period of the function f(x)=4sin^4((4x-3pi)/(6pi^2))+2cos((4x-3pi)/(3pi^2)) is

Period of the function f(x) = sin((pi x)/(2)) cos((pi x)/(2)) is

The period of the function f(x)=cos2pi{2x}+ sin2 pi {2x} , is ( where {x} denotes the functional part of x)

Verify that the period of function f(x) =sin^(10)x " is " pi.

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is

The natural domain of the function f(x)=sqrt(sin^(-1)(2x)+(pi)/(3)) is

The period of the function f(x)=cos2pi{2x}-sin2 pi {2x} , is ( where {x} denotes the functional part of x)

If the function f(x) = a sin x + 1/3 sin 3x is maximum at x= pi/3 a=?

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. The period of the function f(x)= [6x+7]+cospix-6x , where [dot] denote...

    Text Solution

    |

  2. If f(x) and g(x) are periodic functions with periods 7 and 11, respect...

    Text Solution

    |

  3. The period of the function f(x)=c^((sin^2x) +sin^2 (x+pi/3)+cosxcos(x+...

    Text Solution

    |

  4. Let f(x)={(0.1)^(3[x])}. (where [.] denotes greatest integer function ...

    Text Solution

    |

  5. If the period of (cos(sin(n x)))/(tan(x/n)),n in N ,i s6pi , then n= ...

    Text Solution

    |

  6. The period of f(x)=[x]+[2x]+[3x]+[4x]+[n x]-(n(n+1))/2x , where n in ...

    Text Solution

    |

  7. If f(x)=(-1)^([2/pi]),g(x)=|sinx|-|cosx|,a n dvarphi(x)=f(x)g(x) (wher...

    Text Solution

    |

  8. If f(x)=1/x ,g(x)=1/(x^2), and h(x)=x^2, then (A) f(g(x))=x^2,x!=...

    Text Solution

    |

  9. If f(x)={(x^(2)",","for "x ge0),(x",","for "x lt 0):}, then fof(x) is...

    Text Solution

    |

  10. Let f(x)=sinxa n dg(x)=(log)e|x|dot If the ranges of the composition f...

    Text Solution

    |

  11. If f(x)={x ,xi sr a t ion a l1-x ,xi si r r a t ion a l ,t h e nf(f(x)...

    Text Solution

    |

  12. If f and g are one-one functions, then a. f+g is one one b. fg is one...

    Text Solution

    |

  13. The domain of f(x) is (0,1)dot Then the domain of (f(e^x)+f(1n|x|) is ...

    Text Solution

    |

  14. Let h(x)=|k x+5|,t h edom a inoff(x)b e[-5,7], the domain of f(h(xx))b...

    Text Solution

    |

  15. If f(x)=sinx+cosx and g(x)=x^2-1, then g(f (x)) is invertible in the ...

    Text Solution

    |

  16. If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then ...

    Text Solution

    |

  17. Let f(x)=(x+1)^2-1, xgeq-1. Then the set {x :f(x)=f^(-1)(x)} is {0,1,(...

    Text Solution

    |

  18. if f:[1,oo)->[2,oo) is given by f(x)=x+1/x then f^-1(x) equals to : a)...

    Text Solution

    |

  19. Suppose f(x)=(x+1)^2forxgeq-1. If g(x) is the function whose graph is ...

    Text Solution

    |

  20. Let f:[-pi/3,(2pi)/3]vec[0,4] be a function defined as f(x)=sqrt(3)sin...

    Text Solution

    |