Home
Class 12
MATHS
If f(x)={(x^(2)",","for "x ge0),(x",","...

If `f(x)={(x^(2)",","for "x ge0),(x",","for "x lt 0):}`, then fof(x) is given by

A

`x^(2) " for " x ge 0, x " for " x lt 0`

B

`x^(4) " for " x ge 0, x^(2) " for " x lt 0`

C

`x^(4) " for " x ge 0, -x^(2) " for " x lt 0`

D

`x^(4) " for " x ge 0, x " for " x lt 0`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(f(x)) \) for the given piecewise function \[ f(x) = \begin{cases} x^2 & \text{for } x \geq 0 \\ x & \text{for } x < 0 \end{cases} \] we will evaluate \( f(f(x)) \) based on the two cases defined in the function. ### Step 1: Determine \( f(x) \) 1. **Case 1**: If \( x \geq 0 \), then \( f(x) = x^2 \). 2. **Case 2**: If \( x < 0 \), then \( f(x) = x \). ### Step 2: Evaluate \( f(f(x)) \) Now we will evaluate \( f(f(x)) \) based on the results from Step 1. #### Sub-case 1: When \( x \geq 0 \) - Here, \( f(x) = x^2 \). - Now we need to evaluate \( f(f(x)) = f(x^2) \). - Since \( x^2 \geq 0 \) (because \( x \geq 0 \)), we use the first case of \( f \): \[ f(x^2) = (x^2)^2 = x^4 \] Thus, for \( x \geq 0 \), we have: \[ f(f(x)) = x^4 \] #### Sub-case 2: When \( x < 0 \) - Here, \( f(x) = x \). - Now we need to evaluate \( f(f(x)) = f(x) \). - Since \( x < 0 \), we use the second case of \( f \): \[ f(x) = x \] Thus, for \( x < 0 \), we have: \[ f(f(x)) = x \] ### Final Result Combining both cases, we can write: \[ f(f(x)) = \begin{cases} x^4 & \text{for } x \geq 0 \\ x & \text{for } x < 0 \end{cases} \]

To find \( f(f(x)) \) for the given piecewise function \[ f(x) = \begin{cases} x^2 & \text{for } x \geq 0 \\ x & \text{for } x < 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(2+x",", x ge0),(4-x",", x lt 0):}, then f (f(x)) is given by :

If f(x)={x^2, for xgeq1 ; x for x<0 ,then fof(x) is given by

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

If f(x) ge0 for all x, then f(2-x) is

Let f(x)={{:(x^(2)-ax+1",", x lt 0),(b(1-x)^(3)",", x ge0):} . If is a differentiable function, then the ordered pair (a, b) is

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} g(f(x)) is not defined if

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If the domain of g(f(x))" is " [-1, 4], then

Let f (x) = {{:(min (x"," x ^(2)), x ge 0),( max (2x "," x-1), x lt 0):}, then which of the following is not true ?

if f(x) ={{:( x-1, xlt 0),( x^(2) - 2x , x ge 0):} , then

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. If f(x)=(-1)^([2/pi]),g(x)=|sinx|-|cosx|,a n dvarphi(x)=f(x)g(x) (wher...

    Text Solution

    |

  2. If f(x)=1/x ,g(x)=1/(x^2), and h(x)=x^2, then (A) f(g(x))=x^2,x!=...

    Text Solution

    |

  3. If f(x)={(x^(2)",","for "x ge0),(x",","for "x lt 0):}, then fof(x) is...

    Text Solution

    |

  4. Let f(x)=sinxa n dg(x)=(log)e|x|dot If the ranges of the composition f...

    Text Solution

    |

  5. If f(x)={x ,xi sr a t ion a l1-x ,xi si r r a t ion a l ,t h e nf(f(x)...

    Text Solution

    |

  6. If f and g are one-one functions, then a. f+g is one one b. fg is one...

    Text Solution

    |

  7. The domain of f(x) is (0,1)dot Then the domain of (f(e^x)+f(1n|x|) is ...

    Text Solution

    |

  8. Let h(x)=|k x+5|,t h edom a inoff(x)b e[-5,7], the domain of f(h(xx))b...

    Text Solution

    |

  9. If f(x)=sinx+cosx and g(x)=x^2-1, then g(f (x)) is invertible in the ...

    Text Solution

    |

  10. If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then ...

    Text Solution

    |

  11. Let f(x)=(x+1)^2-1, xgeq-1. Then the set {x :f(x)=f^(-1)(x)} is {0,1,(...

    Text Solution

    |

  12. if f:[1,oo)->[2,oo) is given by f(x)=x+1/x then f^-1(x) equals to : a)...

    Text Solution

    |

  13. Suppose f(x)=(x+1)^2forxgeq-1. If g(x) is the function whose graph is ...

    Text Solution

    |

  14. Let f:[-pi/3,(2pi)/3]vec[0,4] be a function defined as f(x)=sqrt(3)sin...

    Text Solution

    |

  15. Which of the following functions is the inverse of itself? (a) f(x)=(1...

    Text Solution

    |

  16. If g(x)=x^2+x-2a n d1/2gof(x)=2x^2-5x+2, then which is not a possible ...

    Text Solution

    |

  17. Let f: Xrarryf(x)=sinx+cosx+2sqrt(2) be invertible. Then which XrarrY ...

    Text Solution

    |

  18. If f(x) is an invertible function and g(x)=2f(x)+5, then the value of ...

    Text Solution

    |

  19. Discuss the differentiability of f(x) =[x]+ sqrt({x})), where [.] an...

    Text Solution

    |

  20. If f is a function such that f(0)=2,f(1)=3,a n df(x+2)=2f(x)-f(x+1) fo...

    Text Solution

    |