Home
Class 12
MATHS
If f(x)=sinx+cosx and g(x)=x^2-1, then ...

If `f(x)=sinx+cosx `and `g(x)=x^2-1`, then `g(f (x)) `is invertible in the domain .

A

`[0, (pi)/(2)]`

B

`[-(pi)/(4),(pi)/(4)]`

C

`[-(pi)/(2),(pi)/(2)]`

D

`[0,pi]`

Text Solution

AI Generated Solution

The correct Answer is:
To determine if the function \( g(f(x)) \) is invertible, we need to analyze the functions \( f(x) \) and \( g(x) \) given by: - \( f(x) = \sin x + \cos x \) - \( g(x) = x^2 - 1 \) ### Step 1: Find the composition \( g(f(x)) \) First, we need to compute \( g(f(x)) \): \[ g(f(x)) = g(\sin x + \cos x) = (\sin x + \cos x)^2 - 1 \] ### Step 2: Expand \( g(f(x)) \) Now we expand \( (\sin x + \cos x)^2 \): \[ (\sin x + \cos x)^2 = \sin^2 x + \cos^2 x + 2\sin x \cos x \] Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \): \[ g(f(x)) = 1 + 2\sin x \cos x - 1 = 2\sin x \cos x \] ### Step 3: Simplify \( g(f(x)) \) We can simplify \( 2\sin x \cos x \) using the double angle identity: \[ g(f(x)) = \sin(2x) \] ### Step 4: Determine the invertibility of \( g(f(x)) \) A function is invertible if it is one-to-one (1-1) and onto (onto). #### Checking if \( g(f(x)) = \sin(2x) \) is one-to-one: The function \( \sin(2x) \) is periodic with a period of \( \pi \). Therefore, it is not one-to-one over its entire domain. However, we can restrict the domain to make it one-to-one. To ensure that \( \sin(2x) \) is one-to-one, we can restrict \( x \) to the interval where \( 2x \) spans from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \). This corresponds to: \[ x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \] In this interval, \( \sin(2x) \) is strictly increasing, thus it is one-to-one. ### Step 5: Determine if \( g(f(x)) \) is onto The range of \( \sin(2x) \) as \( x \) varies in \( \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \) is from \( -1 \) to \( 1 \). Therefore, it covers the entire codomain of \( \sin(2x) \) which is also \( [-1, 1] \). ### Conclusion Since \( g(f(x)) = \sin(2x) \) is one-to-one and onto in the restricted domain \( \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \), we conclude that \( g(f(x)) \) is invertible in this domain. ### Final Answer The function \( g(f(x)) \) is invertible in the domain \( x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \). ---

To determine if the function \( g(f(x)) \) is invertible, we need to analyze the functions \( f(x) \) and \( g(x) \) given by: - \( f(x) = \sin x + \cos x \) - \( g(x) = x^2 - 1 \) ### Step 1: Find the composition \( g(f(x)) \) First, we need to compute \( g(f(x)) \): ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sinx" and "g(x)=sgn sinx , then g'(1) equals

If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

Let f(x)=2x-sinx and g(x) = 3^(sqrtx) . Then

Let g(x)=f(sin x)+ f(cosx), then g(x) is decreasing on:

If f(x) = {sinx , x lt 0 and cosx-|x-1| , x leq 0 then g(x) = f(|x|) is non-differentiable for

If f(x)=sin^2x and the composite function g(f(x))=|sinx| , then g(x) is equal to (a) sqrt(x-1) (b) sqrt(x) (c) sqrt(x+1) (d) -sqrt(x)

If f(x)=x-7 and g(x)=sqrt(x) , what is the domain of g@f ?

If f(x)=sinx, g(x)=cosx and h(x)=cos(cosx), then the integral I=int f(g(x)).f(x).h(x)dx simplifies to -lambda sin^(2)(cosx)+C (where, C is the constant of integration). The value of lambda is equal to

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. The domain of f(x) is (0,1)dot Then the domain of (f(e^x)+f(1n|x|) is ...

    Text Solution

    |

  2. Let h(x)=|k x+5|,t h edom a inoff(x)b e[-5,7], the domain of f(h(xx))b...

    Text Solution

    |

  3. If f(x)=sinx+cosx and g(x)=x^2-1, then g(f (x)) is invertible in the ...

    Text Solution

    |

  4. If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then ...

    Text Solution

    |

  5. Let f(x)=(x+1)^2-1, xgeq-1. Then the set {x :f(x)=f^(-1)(x)} is {0,1,(...

    Text Solution

    |

  6. if f:[1,oo)->[2,oo) is given by f(x)=x+1/x then f^-1(x) equals to : a)...

    Text Solution

    |

  7. Suppose f(x)=(x+1)^2forxgeq-1. If g(x) is the function whose graph is ...

    Text Solution

    |

  8. Let f:[-pi/3,(2pi)/3]vec[0,4] be a function defined as f(x)=sqrt(3)sin...

    Text Solution

    |

  9. Which of the following functions is the inverse of itself? (a) f(x)=(1...

    Text Solution

    |

  10. If g(x)=x^2+x-2a n d1/2gof(x)=2x^2-5x+2, then which is not a possible ...

    Text Solution

    |

  11. Let f: Xrarryf(x)=sinx+cosx+2sqrt(2) be invertible. Then which XrarrY ...

    Text Solution

    |

  12. If f(x) is an invertible function and g(x)=2f(x)+5, then the value of ...

    Text Solution

    |

  13. Discuss the differentiability of f(x) =[x]+ sqrt({x})), where [.] an...

    Text Solution

    |

  14. If f is a function such that f(0)=2,f(1)=3,a n df(x+2)=2f(x)-f(x+1) fo...

    Text Solution

    |

  15. A function f(x) satisfies the functional equation x^2f(x)+f(1-x)=2x-x^...

    Text Solution

    |

  16. If f(x) is a polynomial satisfying f(x)f(1/x)=f(x)+f(1/x)a n df(3)=28 ...

    Text Solution

    |

  17. If f(2x+y/8,2x-y/8)=x y , then f(m , n)=0 only when m=n only when m!...

    Text Solution

    |

  18. Let f : R to R be a function such that f(0)=1 and for any x,y in R, f(...

    Text Solution

    |

  19. If f(x+y)=f(x)+f(y)-x y-1AAx , y in Ra n df(1)=1, then the number of ...

    Text Solution

    |

  20. The function f satisfies the functional equation 3f(x)+2f((x+59)/(x1))...

    Text Solution

    |