Home
Class 12
MATHS
If the function f:[1,oo)->[1,oo) is def...

If the function `f:[1,oo)->[1,oo)` is defined by `f(x)=2^(x(x-1)),` then `f^-1(x)` is (A) `(1/2)^(x(x-1))` (B) `1/2(1+ sqrt(1+4log_2x)`) (C) `1/2(1-sqrt(1+4log_2x))` (D) not defined

A

`((1)/(2))^(x(x-1))`

B

`(1)/(2)(1+sqrt(1+4log_(2)x))`

C

`(1)/(2)(1-sqrt(1+4log_(2)x))`

D

not defined

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = 2^{x(x-1)} \) defined on the domain \( [1, \infty) \) and mapping to \( [1, \infty) \), we will follow these steps: ### Step 1: Set up the equation We start by letting \( y = f(x) \): \[ y = 2^{x(x-1)} \] ### Step 2: Take the logarithm To solve for \( x \), we take the logarithm base 2 of both sides: \[ \log_2 y = x(x-1) \] ### Step 3: Rearrange the equation Rearranging gives us a quadratic equation in terms of \( x \): \[ x^2 - x - \log_2 y = 0 \] ### Step 4: Apply the quadratic formula Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = -1, c = -\log_2 y \): \[ x = \frac{1 \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-\log_2 y)}}{2 \cdot 1} \] \[ x = \frac{1 \pm \sqrt{1 + 4\log_2 y}}{2} \] ### Step 5: Select the appropriate root Since \( f(x) \) is defined for \( x \geq 1 \) and is increasing, we take the positive root: \[ x = \frac{1 + \sqrt{1 + 4\log_2 y}}{2} \] ### Step 6: Substitute back to find \( f^{-1}(x) \) Now, we replace \( y \) with \( x \) to express the inverse function: \[ f^{-1}(x) = \frac{1 + \sqrt{1 + 4\log_2 x}}{2} \] ### Final Result Thus, the inverse function is: \[ f^{-1}(x) = \frac{1 + \sqrt{1 + 4\log_2 x}}{2} \] ### Conclusion The correct answer is (B) \( \frac{1}{2}(1 + \sqrt{1 + 4\log_2 x}) \). ---

To find the inverse of the function \( f(x) = 2^{x(x-1)} \) defined on the domain \( [1, \infty) \) and mapping to \( [1, \infty) \), we will follow these steps: ### Step 1: Set up the equation We start by letting \( y = f(x) \): \[ y = 2^{x(x-1)} \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then f^-1(x) is (A) (1/2)^(x(x-1)) (B) 1/2 sqrt(1+4log_2x) (C) 1/2(1-sqrt(1+4log_2x)) (D) not defined

If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then f^-1(x) is (A) (1/2)^(x(x-1)) (B) 1/2 sqrt(1+4log_2x) (C) 1/2(1+sqrt(1+4log_2x)) (D) not defined

If the function f:[1,∞)→[1,∞) is defined by f(x)=2 ^(x(x-1)) then f^-1(x) is

If the function f:(1,oo)rarr(1,oo) is defined by f(x)=2^(x(x-1)),t h e nf^(-1)(x) is (a) (1/2)^(x(x-1)) (b) 1/2(1+sqrt(1+4(log)_2x)) 1/2(1-sqrt(1+(log)_2x) (d) not defined

If the function f:[1,oo)rarr[1,oo) is defined by f(x)=2^(x(x-1)),t h e nf^(-1)(x) is (1/2)^(x(x-1)) (b) 1/2(1+sqrt(1+4(log)_2x)) 1/2(1-sqrt(1+(log)_2x) (d) not defined

If the function f:(1,oo) vec (1,oo) is defined by f(x)=2^(x(x-1)),t h e nf^(-1)(x) is (1/2)^(x(x-1)) (b) 1/2(1+sqrt(1+4(log)_2x)) 1/2(1-sqrt(1+(log)_2x) (d) not defined

If the function f:(1,oo)rarr(1,oo) is defined by f(x)=2^(x(x-1)),t h e nf^(-1)(x) is (1/2)^(x(x-1)) (b) 1/2(1+sqrt(1+4(log)_2x)) 1/2(1-sqrt(1+(log)_2x) (d) not defined

Let f:[4,oo)to[4,oo) be defined by f(x)=5^(x^((x-4))) .Then f^(-1)(x) is

If f:[1, oo) rarr [1, oo) is defined as f(x) = 3^(x(x-2)) then f^(-1)(x) is equal to

The function f:R->[-1/2,1/2] defined as f(x)=x/(1+x^2) is

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. Let h(x)=|k x+5|,t h edom a inoff(x)b e[-5,7], the domain of f(h(xx))b...

    Text Solution

    |

  2. If f(x)=sinx+cosx and g(x)=x^2-1, then g(f (x)) is invertible in the ...

    Text Solution

    |

  3. If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then ...

    Text Solution

    |

  4. Let f(x)=(x+1)^2-1, xgeq-1. Then the set {x :f(x)=f^(-1)(x)} is {0,1,(...

    Text Solution

    |

  5. if f:[1,oo)->[2,oo) is given by f(x)=x+1/x then f^-1(x) equals to : a)...

    Text Solution

    |

  6. Suppose f(x)=(x+1)^2forxgeq-1. If g(x) is the function whose graph is ...

    Text Solution

    |

  7. Let f:[-pi/3,(2pi)/3]vec[0,4] be a function defined as f(x)=sqrt(3)sin...

    Text Solution

    |

  8. Which of the following functions is the inverse of itself? (a) f(x)=(1...

    Text Solution

    |

  9. If g(x)=x^2+x-2a n d1/2gof(x)=2x^2-5x+2, then which is not a possible ...

    Text Solution

    |

  10. Let f: Xrarryf(x)=sinx+cosx+2sqrt(2) be invertible. Then which XrarrY ...

    Text Solution

    |

  11. If f(x) is an invertible function and g(x)=2f(x)+5, then the value of ...

    Text Solution

    |

  12. Discuss the differentiability of f(x) =[x]+ sqrt({x})), where [.] an...

    Text Solution

    |

  13. If f is a function such that f(0)=2,f(1)=3,a n df(x+2)=2f(x)-f(x+1) fo...

    Text Solution

    |

  14. A function f(x) satisfies the functional equation x^2f(x)+f(1-x)=2x-x^...

    Text Solution

    |

  15. If f(x) is a polynomial satisfying f(x)f(1/x)=f(x)+f(1/x)a n df(3)=28 ...

    Text Solution

    |

  16. If f(2x+y/8,2x-y/8)=x y , then f(m , n)=0 only when m=n only when m!...

    Text Solution

    |

  17. Let f : R to R be a function such that f(0)=1 and for any x,y in R, f(...

    Text Solution

    |

  18. If f(x+y)=f(x)+f(y)-x y-1AAx , y in Ra n df(1)=1, then the number of ...

    Text Solution

    |

  19. The function f satisfies the functional equation 3f(x)+2f((x+59)/(x1))...

    Text Solution

    |

  20. Let f: RvecR be a continuous and differentiable function such that (f(...

    Text Solution

    |