Home
Class 12
MATHS
Let f(x)=(x+1)^2-1, xgeq-1. Then the set...

Let `f(x)=(x+1)^2-1, xgeq-1.` Then the set `{x :f(x)=f^(-1)(x)}` is `{0,1,(-3+isqrt(3))/2,(-3-isqrt(3))/2}` (b) `{0,1,-1` `{0,1,1}` (d) `e m p t y`

A

`{0,-1,(-3+isqrt(3))/(2),(-3-isqrt(3))/(2)}`

B

`{0,1,-1}`

C

`{0, -1}`

D

empty

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the set of \( x \) such that \( f(x) = f^{-1}(x) \) for the function \( f(x) = (x+1)^2 - 1 \) where \( x \geq -1 \). ### Step 1: Find the function \( f(x) \) The function is given by: \[ f(x) = (x+1)^2 - 1 \] Expanding this, we get: \[ f(x) = x^2 + 2x + 1 - 1 = x^2 + 2x \] ### Step 2: Find the inverse function \( f^{-1}(x) \) To find the inverse, we set \( y = f(x) \): \[ y = x^2 + 2x \] Rearranging gives: \[ x^2 + 2x - y = 0 \] This is a quadratic equation in \( x \). We can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = 2, c = -y \): \[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-y)}}{2 \cdot 1} = \frac{-2 \pm \sqrt{4 + 4y}}{2} \] Simplifying this, we have: \[ x = \frac{-2 \pm 2\sqrt{1 + y}}{2} = -1 \pm \sqrt{1 + y} \] Since \( f(x) \) is increasing for \( x \geq -1 \), we take the positive root: \[ f^{-1}(y) = -1 + \sqrt{1 + y} \] ### Step 3: Set up the equation \( f(x) = f^{-1}(x) \) We need to solve: \[ f(x) = f^{-1}(x) \] Substituting the expressions we found: \[ x^2 + 2x = -1 + \sqrt{1 + x} \] ### Step 4: Rearranging the equation Rearranging gives: \[ x^2 + 2x + 1 = \sqrt{1 + x} \] Squaring both sides: \[ (x^2 + 2x + 1)^2 = 1 + x \] Expanding the left side: \[ (x^2 + 2x + 1)(x^2 + 2x + 1) = x^4 + 4x^3 + 6x^2 + 4x + 1 \] Setting this equal to \( 1 + x \): \[ x^4 + 4x^3 + 6x^2 + 4x + 1 = 1 + x \] Subtracting \( 1 + x \) from both sides: \[ x^4 + 4x^3 + 6x^2 + 3x = 0 \] ### Step 5: Factor the equation Factoring out \( x \): \[ x(x^3 + 4x^2 + 6x + 3) = 0 \] This gives us one solution: \[ x = 0 \] Now we need to solve the cubic equation \( x^3 + 4x^2 + 6x + 3 = 0 \). ### Step 6: Finding roots of the cubic equation Using the Rational Root Theorem or synthetic division, we can find the roots. Testing \( x = -1 \): \[ (-1)^3 + 4(-1)^2 + 6(-1) + 3 = -1 + 4 - 6 + 3 = 0 \] So \( x = -1 \) is a root. We can factor: \[ x^3 + 4x^2 + 6x + 3 = (x + 1)(x^2 + 3x + 3) \] Now we solve \( x^2 + 3x + 3 = 0 \) using the quadratic formula: \[ x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1} = \frac{-3 \pm \sqrt{9 - 12}}{2} = \frac{-3 \pm \sqrt{-3}}{2} = \frac{-3 \pm i\sqrt{3}}{2} \] ### Step 7: Collecting all solutions Thus, the solutions are: 1. \( x = 0 \) 2. \( x = -1 \) 3. \( x = \frac{-3 + i\sqrt{3}}{2} \) 4. \( x = \frac{-3 - i\sqrt{3}}{2} \) ### Final Result The set of \( x \) such that \( f(x) = f^{-1}(x) \) is: \[ \{0, -1, \frac{-3 + i\sqrt{3}}{2}, \frac{-3 - i\sqrt{3}}{2}\} \]

To solve the problem, we need to find the set of \( x \) such that \( f(x) = f^{-1}(x) \) for the function \( f(x) = (x+1)^2 - 1 \) where \( x \geq -1 \). ### Step 1: Find the function \( f(x) \) The function is given by: \[ f(x) = (x+1)^2 - 1 \] Expanding this, we get: ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(x+1)^2-1, xgeq-1. Then the set {x :f(x)=f^(-1)(x)} is (a) {0,1,(-3+isqrt(3))/2,(-3-isqrt(3))/2} (b) {0,-1} (c) {0,1} (d) e m p t y

f(x) = sin^(-1)x+x^(2)-3x + (x^(3))/(3),x in[0,1]

Let f(x)={(1+3x)^(1/x), x != 0e^3,x=0 Discuss the continuity of f(x) at (a) x=0, (b) x=1

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

Let f : [-1, -1/2] rarr [-1, 1] is defined by f(x)=4x^(3)-3x , then f^(-1) (x) is

If f(x)=(sin^(-1)x)/(sqrt(1-x^2)),t h e n(1-x^2)f^(x)-xf(x)= (a)1 (b) -1 (c) 0 (d) none of these

Let f(x)={(1+3x)^(1/x),x!=0 and e^3,x=0. Discuss the continuity of f(x) at (a)x=0, (b) x=1.

Let f(x)=x^3 be a function with domain {0, 1, 2, 3}. Then domain of f^(-1) is (a) {3, 2, 1, 0} (b) {0, -1, -2, -3} (c) {0, 1, 8, 27} (d) {0, -1, -8, -27}

Greatest value of f(x)=(x+1)^(1/3)-(x-1)^(1/3) on [0,1] is 1 (b) 2 (c) 3 (d) 1/3

If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-isqrt(3))/(2i)]] , i = sqrt(-1) and f (x) = x^(2) + 2, then f(A) equals to

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. If f(x)=sinx+cosx and g(x)=x^2-1, then g(f (x)) is invertible in the ...

    Text Solution

    |

  2. If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then ...

    Text Solution

    |

  3. Let f(x)=(x+1)^2-1, xgeq-1. Then the set {x :f(x)=f^(-1)(x)} is {0,1,(...

    Text Solution

    |

  4. if f:[1,oo)->[2,oo) is given by f(x)=x+1/x then f^-1(x) equals to : a)...

    Text Solution

    |

  5. Suppose f(x)=(x+1)^2forxgeq-1. If g(x) is the function whose graph is ...

    Text Solution

    |

  6. Let f:[-pi/3,(2pi)/3]vec[0,4] be a function defined as f(x)=sqrt(3)sin...

    Text Solution

    |

  7. Which of the following functions is the inverse of itself? (a) f(x)=(1...

    Text Solution

    |

  8. If g(x)=x^2+x-2a n d1/2gof(x)=2x^2-5x+2, then which is not a possible ...

    Text Solution

    |

  9. Let f: Xrarryf(x)=sinx+cosx+2sqrt(2) be invertible. Then which XrarrY ...

    Text Solution

    |

  10. If f(x) is an invertible function and g(x)=2f(x)+5, then the value of ...

    Text Solution

    |

  11. Discuss the differentiability of f(x) =[x]+ sqrt({x})), where [.] an...

    Text Solution

    |

  12. If f is a function such that f(0)=2,f(1)=3,a n df(x+2)=2f(x)-f(x+1) fo...

    Text Solution

    |

  13. A function f(x) satisfies the functional equation x^2f(x)+f(1-x)=2x-x^...

    Text Solution

    |

  14. If f(x) is a polynomial satisfying f(x)f(1/x)=f(x)+f(1/x)a n df(3)=28 ...

    Text Solution

    |

  15. If f(2x+y/8,2x-y/8)=x y , then f(m , n)=0 only when m=n only when m!...

    Text Solution

    |

  16. Let f : R to R be a function such that f(0)=1 and for any x,y in R, f(...

    Text Solution

    |

  17. If f(x+y)=f(x)+f(y)-x y-1AAx , y in Ra n df(1)=1, then the number of ...

    Text Solution

    |

  18. The function f satisfies the functional equation 3f(x)+2f((x+59)/(x1))...

    Text Solution

    |

  19. Let f: RvecR be a continuous and differentiable function such that (f(...

    Text Solution

    |

  20. Let g(x)=f(x)-1. If f(x)+f(1-x)=2AAx in R , then g(x) is symmetrical ...

    Text Solution

    |