Home
Class 12
MATHS
if f:[1,oo)->[2,oo) is given by f(x)=x+1...

if `f:[1,oo)->[2,oo)` is given by `f(x)=x+1/x` then `f^-1(x)` equals to : a) `(x+sqrt(x^2-4))/2` b) `x/(1+x^2)` c) `(x-sqrt(x^2-4))/2` d) `1+sqrt(x^2-4)`

A

`((x+sqrt(x^(2)-4)))/(2)`

B

`(x)/(1+x^(2))`

C

`((x-sqrt(x^(2)-4)))/(2)`

D

`1+sqrt(x^(2)-4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse function \( f^{-1}(x) \) for the function \( f(x) = x + \frac{1}{x} \), defined on the domain \([1, \infty)\) and mapping to the range \([2, \infty)\), we will follow these steps: ### Step 1: Set up the equation We start by letting \( y = f(x) \): \[ y = x + \frac{1}{x} \] ### Step 2: Rearrange the equation To find \( x \) in terms of \( y \), we can rearrange the equation: \[ y = x + \frac{1}{x} \implies yx = x^2 + 1 \] This rearranges to: \[ x^2 - yx + 1 = 0 \] ### Step 3: Apply the quadratic formula Now we can use the quadratic formula to solve for \( x \): \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -y \), and \( c = 1 \). Plugging these values into the formula gives: \[ x = \frac{y \pm \sqrt{(-y)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] This simplifies to: \[ x = \frac{y \pm \sqrt{y^2 - 4}}{2} \] ### Step 4: Determine the correct sign Since \( f(x) \) is increasing for \( x \geq 1 \), we take the positive root: \[ x = \frac{y + \sqrt{y^2 - 4}}{2} \] ### Step 5: Write the inverse function Thus, we can express the inverse function as: \[ f^{-1}(x) = \frac{x + \sqrt{x^2 - 4}}{2} \] ### Conclusion The correct answer is: \[ \text{a) } f^{-1}(x) = \frac{x + \sqrt{x^2 - 4}}{2} \] ---

To find the inverse function \( f^{-1}(x) \) for the function \( f(x) = x + \frac{1}{x} \), defined on the domain \([1, \infty)\) and mapping to the range \([2, \infty)\), we will follow these steps: ### Step 1: Set up the equation We start by letting \( y = f(x) \): \[ y = x + \frac{1}{x} \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If F :[1,oo)->[2,oo) is given by f(x)=x+1/x ,t h e n \ f^(-1)(x) equals \ \ (a) (x+sqrt(x^2-4))/2 (b) x/(1+x^2) (c) (x-sqrt(x^2-4))/2 (d) 1+sqrt(x^2-4)

If F :[1,oo)vec[2,oo) is given by f(x)=x+1/x ,t h e nf^(-1)(x) equals. (x+sqrt(x^2-4))/2 (b) x/(1+x^2) (c) (x-sqrt(x^2-4))/2 (d) 1+sqrt(x^2-4)

If F :[1,oo)vec[2,oo) is given by f(x)=x+1/x ,t h e nf^(-1)(x) equals. (x+sqrt(x^2-4))/2 (b) x/(1+x^2) (c) (x-sqrt(x^2-4))/2 1+sqrt(x^2-4)

If f(x)=sqrt(1-sin2x), then f'(x) equals

If f:[1, oo) rarr [1, oo) is defined as f(x) = 3^(x(x-2)) then f^(-1)(x) is equal to

If f :[2,oo)rarr(-oo,4], where f(x)=x(4-x) then find f^-1(x)

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then f^-1(x) is (A) (1/2)^(x(x-1)) (B) 1/2(1+ sqrt(1+4log_2x) ) (C) 1/2(1-sqrt(1+4log_2x)) (D) not defined

If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then f^-1(x) is (A) (1/2)^(x(x-1)) (B) 1/2 sqrt(1+4log_2x) (C) 1/2(1+sqrt(1+4log_2x)) (D) not defined

If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then f^-1(x) is (A) (1/2)^(x(x-1)) (B) 1/2 sqrt(1+4log_2x) (C) 1/2(1-sqrt(1+4log_2x)) (D) not defined

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then ...

    Text Solution

    |

  2. Let f(x)=(x+1)^2-1, xgeq-1. Then the set {x :f(x)=f^(-1)(x)} is {0,1,(...

    Text Solution

    |

  3. if f:[1,oo)->[2,oo) is given by f(x)=x+1/x then f^-1(x) equals to : a)...

    Text Solution

    |

  4. Suppose f(x)=(x+1)^2forxgeq-1. If g(x) is the function whose graph is ...

    Text Solution

    |

  5. Let f:[-pi/3,(2pi)/3]vec[0,4] be a function defined as f(x)=sqrt(3)sin...

    Text Solution

    |

  6. Which of the following functions is the inverse of itself? (a) f(x)=(1...

    Text Solution

    |

  7. If g(x)=x^2+x-2a n d1/2gof(x)=2x^2-5x+2, then which is not a possible ...

    Text Solution

    |

  8. Let f: Xrarryf(x)=sinx+cosx+2sqrt(2) be invertible. Then which XrarrY ...

    Text Solution

    |

  9. If f(x) is an invertible function and g(x)=2f(x)+5, then the value of ...

    Text Solution

    |

  10. Discuss the differentiability of f(x) =[x]+ sqrt({x})), where [.] an...

    Text Solution

    |

  11. If f is a function such that f(0)=2,f(1)=3,a n df(x+2)=2f(x)-f(x+1) fo...

    Text Solution

    |

  12. A function f(x) satisfies the functional equation x^2f(x)+f(1-x)=2x-x^...

    Text Solution

    |

  13. If f(x) is a polynomial satisfying f(x)f(1/x)=f(x)+f(1/x)a n df(3)=28 ...

    Text Solution

    |

  14. If f(2x+y/8,2x-y/8)=x y , then f(m , n)=0 only when m=n only when m!...

    Text Solution

    |

  15. Let f : R to R be a function such that f(0)=1 and for any x,y in R, f(...

    Text Solution

    |

  16. If f(x+y)=f(x)+f(y)-x y-1AAx , y in Ra n df(1)=1, then the number of ...

    Text Solution

    |

  17. The function f satisfies the functional equation 3f(x)+2f((x+59)/(x1))...

    Text Solution

    |

  18. Let f: RvecR be a continuous and differentiable function such that (f(...

    Text Solution

    |

  19. Let g(x)=f(x)-1. If f(x)+f(1-x)=2AAx in R , then g(x) is symmetrical ...

    Text Solution

    |

  20. If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) ...

    Text Solution

    |