Home
Class 12
MATHS
Let f:[-pi/3,(2pi)/3]vec[0,4] be a funct...

Let `f:[-pi/3,(2pi)/3]vec[0,4]` be a function defined as `f(x)=sqrt(3)sinx-cosx+2.` Then `f^(-1)(x)` is given by `sin^(-1)((x-2)/2)-pi/6` `sin^(-1)((x-2)/2)+pi/6` `(2pi)/3+cos^(-1)((x-2)/2)` (d) none of these

A

`sin^(-1)((x-2)/(2))-(pi)/(6)`

B

`sin^(-1)((x-2)/(2))+(pi)/(6)`

C

`(2pi)/(3)+cos^(-1)((x-2)/(2))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = \sqrt{3} \sin x - \cos x + 2 \) defined on the interval \( [-\frac{\pi}{3}, \frac{2\pi}{3}] \) and mapping to \( [0, 4] \), we can follow these steps: ### Step 1: Set up the equation We start by letting \( y = f(x) \): \[ y = \sqrt{3} \sin x - \cos x + 2 \] ### Step 2: Rearrange the equation We can rearrange the equation to isolate the trigonometric functions: \[ y - 2 = \sqrt{3} \sin x - \cos x \] ### Step 3: Express in terms of sine Next, we can express the right-hand side in terms of sine. We know that: \[ \sqrt{3} \sin x - \cos x = 2 \left( \frac{\sqrt{3}}{2} \sin x - \frac{1}{2} \cos x \right) \] This can be rewritten using the sine of a difference: \[ \sqrt{3} \sin x - \cos x = 2 \sin\left(x - \frac{\pi}{6}\right) \] Thus, we have: \[ y - 2 = 2 \sin\left(x - \frac{\pi}{6}\right) \] ### Step 4: Solve for sine Dividing both sides by 2 gives: \[ \frac{y - 2}{2} = \sin\left(x - \frac{\pi}{6}\right) \] ### Step 5: Take the inverse sine Now, we take the inverse sine of both sides: \[ x - \frac{\pi}{6} = \sin^{-1}\left(\frac{y - 2}{2}\right) \] ### Step 6: Solve for x Finally, we solve for \( x \): \[ x = \sin^{-1}\left(\frac{y - 2}{2}\right) + \frac{\pi}{6} \] ### Step 7: Replace y with x Since we are finding the inverse function \( f^{-1}(x) \), we replace \( y \) with \( x \): \[ f^{-1}(x) = \sin^{-1}\left(\frac{x - 2}{2}\right) + \frac{\pi}{6} \] ### Conclusion Thus, the correct answer is: \[ f^{-1}(x) = \sin^{-1}\left(\frac{x - 2}{2}\right) + \frac{\pi}{6} \]

To find the inverse of the function \( f(x) = \sqrt{3} \sin x - \cos x + 2 \) defined on the interval \( [-\frac{\pi}{3}, \frac{2\pi}{3}] \) and mapping to \( [0, 4] \), we can follow these steps: ### Step 1: Set up the equation We start by letting \( y = f(x) \): \[ y = \sqrt{3} \sin x - \cos x + 2 \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f:[-pi/3,(2pi)/3] rarr [0,4] be a function defined as f(x)=sqrt(3)sinx-cosx+2. Then f^(-1)(x) is given by (a) sin^(-1)((x-2)/2)-pi/6 (b) sin^(-1)((x-2)/2)+pi/6 (c) (2pi)/3+cos^(-1)((x-2)/2) (d) none of these

Let f: [(2pi)/(3), (5pi)/(3)]to[0,4] be a function difined as f (x) =sqrt3 sin x - cos x +2, then :

Let f:[-(5pi)/(12),-pi/3]vecR is a function f(x)=tan(x+(2pi)/3)-tan(x+pi/6)+cos(x+pi/6) then

Let f:RtoR be defined as f(x)=(2x-3pi)^(3)+(4)/(3)x+cosx and g(x)=f^(-1)(x) then

Let f:[pi,3pi//2] to R be a function given by f(x)=[sinx]+[1+sinx]+[2+ sinx] Then , the range of f(x) is

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a) [0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a)[0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

If sin^(-1)x-cos^(-1)x=pi/6 , then x= (a) 1/2 (b) (sqrt(3))/2 (c) -1/2 (d) none of these

let f:[-pi/3,pi/6]rarr B defined by f(x)=2cos^2x+sqrt3sin2x+1 . Find B such that f^-1 exists. Also find f^-1

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. if f:[1,oo)->[2,oo) is given by f(x)=x+1/x then f^-1(x) equals to : a)...

    Text Solution

    |

  2. Suppose f(x)=(x+1)^2forxgeq-1. If g(x) is the function whose graph is ...

    Text Solution

    |

  3. Let f:[-pi/3,(2pi)/3]vec[0,4] be a function defined as f(x)=sqrt(3)sin...

    Text Solution

    |

  4. Which of the following functions is the inverse of itself? (a) f(x)=(1...

    Text Solution

    |

  5. If g(x)=x^2+x-2a n d1/2gof(x)=2x^2-5x+2, then which is not a possible ...

    Text Solution

    |

  6. Let f: Xrarryf(x)=sinx+cosx+2sqrt(2) be invertible. Then which XrarrY ...

    Text Solution

    |

  7. If f(x) is an invertible function and g(x)=2f(x)+5, then the value of ...

    Text Solution

    |

  8. Discuss the differentiability of f(x) =[x]+ sqrt({x})), where [.] an...

    Text Solution

    |

  9. If f is a function such that f(0)=2,f(1)=3,a n df(x+2)=2f(x)-f(x+1) fo...

    Text Solution

    |

  10. A function f(x) satisfies the functional equation x^2f(x)+f(1-x)=2x-x^...

    Text Solution

    |

  11. If f(x) is a polynomial satisfying f(x)f(1/x)=f(x)+f(1/x)a n df(3)=28 ...

    Text Solution

    |

  12. If f(2x+y/8,2x-y/8)=x y , then f(m , n)=0 only when m=n only when m!...

    Text Solution

    |

  13. Let f : R to R be a function such that f(0)=1 and for any x,y in R, f(...

    Text Solution

    |

  14. If f(x+y)=f(x)+f(y)-x y-1AAx , y in Ra n df(1)=1, then the number of ...

    Text Solution

    |

  15. The function f satisfies the functional equation 3f(x)+2f((x+59)/(x1))...

    Text Solution

    |

  16. Let f: RvecR be a continuous and differentiable function such that (f(...

    Text Solution

    |

  17. Let g(x)=f(x)-1. If f(x)+f(1-x)=2AAx in R , then g(x) is symmetrical ...

    Text Solution

    |

  18. If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) ...

    Text Solution

    |

  19. If f(x+1/2)+f(x-1/2)=f(x)fora l lx in R , then the period of f(x) is ...

    Text Solution

    |

  20. If a f(x+1)+b f(1/(x+1))=x,x !=-1,a != b,then f(2) is equal to

    Text Solution

    |