Home
Class 12
MATHS
A function f(x) satisfies the functional...

A function `f(x)` satisfies the functional equation `x^2f(x)+f(1-x)=2x-x^4` for all real `x. f(x)` must be

A

`x^(2)`

B

`1-x^(2)`

C

`1+x^(2)`

D

`x^(2)+x+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the functional equation \( x^2 f(x) + f(1-x) = 2x - x^4 \) for all real \( x \), we can follow these steps: ### Step 1: Substitute \( x \) with \( 1-x \) We start by substituting \( x \) with \( 1-x \) in the original equation: \[ (1-x)^2 f(1-x) + f(x) = 2(1-x) - (1-x)^4 \] ### Step 2: Simplify the equation Now, we simplify the right-hand side: \[ 2(1-x) = 2 - 2x \] \[ (1-x)^4 = 1 - 4x + 6x^2 - 4x^3 + x^4 \] So, the equation becomes: \[ (1-x)^2 f(1-x) + f(x) = 2 - 2x - (1 - 4x + 6x^2 - 4x^3 + x^4) \] This simplifies to: \[ (1-x)^2 f(1-x) + f(x) = 2 - 2x - 1 + 4x - 6x^2 + 4x^3 - x^4 \] \[ = 1 + 2x - 6x^2 + 4x^3 - x^4 \] ### Step 3: Write down the two equations Now we have two equations: 1. \( x^2 f(x) + f(1-x) = 2x - x^4 \) (Equation 1) 2. \( (1-x)^2 f(1-x) + f(x) = 1 + 2x - 6x^2 + 4x^3 - x^4 \) (Equation 2) ### Step 4: Express \( f(1-x) \) from Equation 1 From Equation 1, we can express \( f(1-x) \): \[ f(1-x) = 2x - x^4 - x^2 f(x) \] ### Step 5: Substitute \( f(1-x) \) into Equation 2 Now, substitute \( f(1-x) \) into Equation 2: \[ (1-x)^2 (2x - x^4 - x^2 f(x)) + f(x) = 1 + 2x - 6x^2 + 4x^3 - x^4 \] ### Step 6: Expand and simplify Expanding the left-hand side: \[ (1-x)^2 (2x - x^4) - (1-x)^2 x^2 f(x) + f(x) = 1 + 2x - 6x^2 + 4x^3 - x^4 \] ### Step 7: Collect like terms Now, collect like terms and isolate \( f(x) \): \[ (1-x)^2 (2x - x^4) + f(x)(1 - (1-x)^2 x^2) = 1 + 2x - 6x^2 + 4x^3 - x^4 \] ### Step 8: Solve for \( f(x) \) Rearranging gives us: \[ f(x) = \frac{(1 + 2x - 6x^2 + 4x^3 - x^4) - (1-x)^2 (2x - x^4)}{1 - (1-x)^2 x^2} \] ### Step 9: Simplify the expression After simplifying the expression, we find: \[ f(x) = 1 - x^2 \] ### Conclusion Thus, the function \( f(x) \) that satisfies the given functional equation is: \[ \boxed{1 - x^2} \]

To solve the functional equation \( x^2 f(x) + f(1-x) = 2x - x^4 \) for all real \( x \), we can follow these steps: ### Step 1: Substitute \( x \) with \( 1-x \) We start by substituting \( x \) with \( 1-x \) in the original equation: \[ (1-x)^2 f(1-x) + f(x) = 2(1-x) - (1-x)^4 \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

The function f satisfies the functional equation 3f(x)+2f((x+59)/(x1))=10 x+30 for all real x!=1. The value of f(7)i s 8 (b) 4 (c) -8 (d) 11

The function f satisfies the functional equation 3f(x)+2f((x+59)/(x-1))=10 x+30 for all real x!=1. The value of f(7)i s (a) 8 (b) 4 (c) -8 (d) 11

The function f satisfies the functional equation 3f(x)+2f((x+59)/(x-1))=10 x+30 for all real x!=1. The value of f(7)i s 8 (b) 4 (c) -8 (d) 11

A real valued function f(x) satisfies the functional equation f(x-y) = f(x) f(y) - f(a-x) f(a+y) , where a is a given constant and f(0)=1 , f(2a-x) =?

The function f(x) satisfying the equation f^2 (x) + 4 f'(x) f(x) + (f'(x))^2 = 0

A polynomial function f(x) satisfies the condition f(x)f(1/x)=f(x)+f(1/x) for all x inR , x!=0 . If f(3)=-26, then f(4)=

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is

The function f (x) satisfy the equation f (1-x)+ 2f (x) =3x AA x in R, then f (0)=

A function f: R->R satisfies that equation f(x+y)=f(x)f(y) for all x ,\ y in R , f(x)!=0 . Suppose that the function f(x) is differentiable at x=0 and f^(prime)(0)=2 . Prove that f^(prime)(x)=2\ f(x) .

A function f: R->R satisfies that equation f(x+y)=f(x)f(y) for all x ,\ y in R , f(x)!=0 . Suppose that the function f(x) is differentiable at x=0 and f^(prime)(0)=2 . Prove that f^(prime)(x)=2\ f(x) .

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. Discuss the differentiability of f(x) =[x]+ sqrt({x})), where [.] an...

    Text Solution

    |

  2. If f is a function such that f(0)=2,f(1)=3,a n df(x+2)=2f(x)-f(x+1) fo...

    Text Solution

    |

  3. A function f(x) satisfies the functional equation x^2f(x)+f(1-x)=2x-x^...

    Text Solution

    |

  4. If f(x) is a polynomial satisfying f(x)f(1/x)=f(x)+f(1/x)a n df(3)=28 ...

    Text Solution

    |

  5. If f(2x+y/8,2x-y/8)=x y , then f(m , n)=0 only when m=n only when m!...

    Text Solution

    |

  6. Let f : R to R be a function such that f(0)=1 and for any x,y in R, f(...

    Text Solution

    |

  7. If f(x+y)=f(x)+f(y)-x y-1AAx , y in Ra n df(1)=1, then the number of ...

    Text Solution

    |

  8. The function f satisfies the functional equation 3f(x)+2f((x+59)/(x1))...

    Text Solution

    |

  9. Let f: RvecR be a continuous and differentiable function such that (f(...

    Text Solution

    |

  10. Let g(x)=f(x)-1. If f(x)+f(1-x)=2AAx in R , then g(x) is symmetrical ...

    Text Solution

    |

  11. If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) ...

    Text Solution

    |

  12. If f(x+1/2)+f(x-1/2)=f(x)fora l lx in R , then the period of f(x) is ...

    Text Solution

    |

  13. If a f(x+1)+b f(1/(x+1))=x,x !=-1,a != b,then f(2) is equal to

    Text Solution

    |

  14. If f(3x+2)+f(3x+29)=0 AAx in R , then the period of f(x) is

    Text Solution

    |

  15. If the graph of y=f(x) is symmetrical about the lines x=1a n dx=2, the...

    Text Solution

    |

  16. Find f(x) when it is given by f(x)=max{x^(3),x^(2),(1)/(64)},AA x in...

    Text Solution

    |

  17. The equation ||x-2|+a|=4 can have four distinct real solutions for x i...

    Text Solution

    |

  18. Number of integral values of k for which the equation 4 cos^(-1)(-|x|)...

    Text Solution

    |

  19. If f(x) is a real-valued function defined as f(x)=In (1-sinx), then t...

    Text Solution

    |

  20. Let f(x)=x+2|x+1|+2|x-1|. If f(x)=k has exactly one real solution, the...

    Text Solution

    |