Home
Class 12
MATHS
If f(2x+y/8,2x-y/8)=x y , then f(m , n)=...

If `f(2x+y/8,2x-y/8)=x y` , then `f(m , n)=0` only when `m=n` only when `m!=n` `on l yw h e nm=-n` (d) `fora l lma n dn`

A

only when `m = n`

B

only when `m ne n`

C

only when `m = -n`

D

for all m and n

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given function: \[ f(2x + \frac{y}{8}, 2x - \frac{y}{8}) = xy \] We need to find the conditions under which \( f(m, n) = 0 \). ### Step 1: Define Variables Let: - \( \alpha = 2x + \frac{y}{8} \) - \( \beta = 2x - \frac{y}{8} \) From the given equation, we know: \[ f(\alpha, \beta) = xy \] ### Step 2: Solve for \( x \) and \( y \) We can derive \( x \) and \( y \) from \( \alpha \) and \( \beta \). 1. **Adding the equations**: \[ \alpha + \beta = (2x + \frac{y}{8}) + (2x - \frac{y}{8}) = 4x \] Thus, we have: \[ x = \frac{\alpha + \beta}{4} \] 2. **Subtracting the equations**: \[ \alpha - \beta = (2x + \frac{y}{8}) - (2x - \frac{y}{8}) = \frac{y}{4} \] Thus, we have: \[ y = 4(\alpha - \beta) \] ### Step 3: Substitute Back into the Function Now substituting \( x \) and \( y \) back into the function: \[ f(\alpha, \beta) = \left(\frac{\alpha + \beta}{4}\right) \cdot (4(\alpha - \beta)) \] This simplifies to: \[ f(\alpha, \beta) = (\alpha + \beta)(\alpha - \beta) = \alpha^2 - \beta^2 \] ### Step 4: Express \( f(m, n) \) Now, if we let \( m = \alpha \) and \( n = \beta \), we have: \[ f(m, n) = m^2 - n^2 \] ### Step 5: Analyze \( f(m, n) = 0 \) Setting \( f(m, n) = 0 \): \[ m^2 - n^2 = 0 \] This implies: \[ m^2 = n^2 \] ### Step 6: Solve for Conditions The equation \( m^2 = n^2 \) can be factored as: \[ (m - n)(m + n) = 0 \] This gives us two cases: 1. \( m - n = 0 \) → \( m = n \) 2. \( m + n = 0 \) → \( m = -n \) ### Conclusion Thus, \( f(m, n) = 0 \) under the conditions: - \( m = n \) - \( m = -n \) However, since the problem asks for when \( f(m, n) = 0 \), we conclude that it holds true for all values of \( m \) and \( n \) because both conditions can occur simultaneously. ### Final Answer The correct answer is: (d) for all \( m \) and \( n \).

To solve the problem, we start with the given function: \[ f(2x + \frac{y}{8}, 2x - \frac{y}{8}) = xy \] We need to find the conditions under which \( f(m, n) = 0 \). ### Step 1: Define Variables Let: ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f(2x+y/8,2x-y/8)=x y , then f(m , n)+f(n,m)=0 (a) only when m=n (b) only when m!=n (c) only when m=-n (d) for all m and n

If x and y vary inversely, find the values of l, m and n :

If x and y vary inversely, find the values of l, m and n :

Let m and n be positive integers and x,y gt 0 and x+y =k, where k is constant. Let f (x,y) = x ^(m)y ^(n), then: (a) f (x,y) is maximum when x= (mk)/(m+n) (b) f (x,y) is maximuim where x =y (c) maximum value of f (x,y) is (m^(n)n ^(m) k ^(m+n))/((m+n)^(m+n)) (d) maximum value of f (x,y) is (k ^(m+n) m ^(m)n ^(n))/((m+n)^(m+n))

If the segment intercepted by the parabola y^2=4a x with the line l x+m y+n=0 subtends a right angle at the vertex, then 4a l+n=0 (b) 4a l+4a m+n=0 4a m+n=0 (d) a l+n=0

If \ ^n C_x=\ \ ^n C_y\ a n d\ x!=y ,\ t h e n\ x+y=ndot

If the only point of inflection of the function f(x)-(x-a)^m(x-b)^n , m, n e N and m!=n is at x=a then

If x^m y^n=(x+y)^(m+n) , prove that (d^2y)/(dx^2)=0 .

If f(x+y)=f(x)+f(y)-x y-1AAx , y in Ra n df(1)=1, then the number of solution of f(n)=n , n in N , is 0 (b) 1 (c) 2 (d) more than 2

If f(x+y)=f(x)+f(y)-x y-1AAx , y in Ra n df(1)=1, then the number of solution of f(n)=n , n in N , is 0 (b) 1 (c) 2 (d) more than 2

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. A function f(x) satisfies the functional equation x^2f(x)+f(1-x)=2x-x^...

    Text Solution

    |

  2. If f(x) is a polynomial satisfying f(x)f(1/x)=f(x)+f(1/x)a n df(3)=28 ...

    Text Solution

    |

  3. If f(2x+y/8,2x-y/8)=x y , then f(m , n)=0 only when m=n only when m!...

    Text Solution

    |

  4. Let f : R to R be a function such that f(0)=1 and for any x,y in R, f(...

    Text Solution

    |

  5. If f(x+y)=f(x)+f(y)-x y-1AAx , y in Ra n df(1)=1, then the number of ...

    Text Solution

    |

  6. The function f satisfies the functional equation 3f(x)+2f((x+59)/(x1))...

    Text Solution

    |

  7. Let f: RvecR be a continuous and differentiable function such that (f(...

    Text Solution

    |

  8. Let g(x)=f(x)-1. If f(x)+f(1-x)=2AAx in R , then g(x) is symmetrical ...

    Text Solution

    |

  9. If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) ...

    Text Solution

    |

  10. If f(x+1/2)+f(x-1/2)=f(x)fora l lx in R , then the period of f(x) is ...

    Text Solution

    |

  11. If a f(x+1)+b f(1/(x+1))=x,x !=-1,a != b,then f(2) is equal to

    Text Solution

    |

  12. If f(3x+2)+f(3x+29)=0 AAx in R , then the period of f(x) is

    Text Solution

    |

  13. If the graph of y=f(x) is symmetrical about the lines x=1a n dx=2, the...

    Text Solution

    |

  14. Find f(x) when it is given by f(x)=max{x^(3),x^(2),(1)/(64)},AA x in...

    Text Solution

    |

  15. The equation ||x-2|+a|=4 can have four distinct real solutions for x i...

    Text Solution

    |

  16. Number of integral values of k for which the equation 4 cos^(-1)(-|x|)...

    Text Solution

    |

  17. If f(x) is a real-valued function defined as f(x)=In (1-sinx), then t...

    Text Solution

    |

  18. Let f(x)=x+2|x+1|+2|x-1|. If f(x)=k has exactly one real solution, the...

    Text Solution

    |

  19. The number of solutions of 2 cosx=|sinx|, 0 le x le 4 pi, is (a) 0 ...

    Text Solution

    |

  20. about to only mathematics

    Text Solution

    |