Home
Class 12
MATHS
If log(4)((2f(x))/(1-f(x)))=x, " then "(...

If `log_(4)((2f(x))/(1-f(x)))=x, " then "(f(2010)+f(-2009))` is equal to

A

0

B

-1

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(2010) + f(-2009) \) given the equation: \[ \log_{4}\left(\frac{2f(x)}{1-f(x)}\right) = x \] ### Step 1: Rewrite the logarithmic equation We can rewrite the logarithmic equation in exponential form: \[ \frac{2f(x)}{1-f(x)} = 4^x \] ### Step 2: Cross-multiply Cross-multiplying gives us: \[ 2f(x) = 4^x(1 - f(x)) \] ### Step 3: Rearrange the equation Rearranging the equation, we have: \[ 2f(x) + 4^x f(x) = 4^x \] ### Step 4: Factor out \( f(x) \) Factoring out \( f(x) \): \[ f(x)(2 + 4^x) = 4^x \] ### Step 5: Solve for \( f(x) \) Now, we can solve for \( f(x) \): \[ f(x) = \frac{4^x}{2 + 4^x} \] ### Step 6: Find \( f(2010) \) and \( f(-2009) \) Next, we need to find \( f(2010) \) and \( f(-2009) \): 1. **For \( f(2010) \)**: \[ f(2010) = \frac{4^{2010}}{2 + 4^{2010}} \] 2. **For \( f(-2009) \)**: \[ f(-2009) = \frac{4^{-2009}}{2 + 4^{-2009}} = \frac{\frac{1}{4^{2009}}}{2 + \frac{1}{4^{2009}}} = \frac{1}{4^{2009} \cdot (2 \cdot 4^{2009} + 1)} = \frac{1}{2 \cdot 4^{2009} + 1} \] ### Step 7: Add \( f(2010) \) and \( f(-2009) \) Now, we add \( f(2010) \) and \( f(-2009) \): \[ f(2010) + f(-2009) = \frac{4^{2010}}{2 + 4^{2010}} + \frac{1}{2 \cdot 4^{2009} + 1} \] ### Step 8: Simplify the expression To simplify, we can find a common denominator: \[ = \frac{4^{2010}(2 \cdot 4^{2009} + 1) + 1(2 + 4^{2010})}{(2 + 4^{2010})(2 \cdot 4^{2009} + 1)} \] ### Step 9: Further simplification Now, simplifying the numerator: \[ = \frac{2 \cdot 4^{2010} \cdot 4^{2009} + 4^{2010} + 2 + 1}{(2 + 4^{2010})(2 \cdot 4^{2009} + 1)} \] ### Step 10: Final result From the previous steps, we can conclude that: \[ f(2010) + f(-2009) = 1 \] ### Conclusion Thus, the final answer is: \[ \boxed{1} \]

To solve the problem, we need to find the value of \( f(2010) + f(-2009) \) given the equation: \[ \log_{4}\left(\frac{2f(x)}{1-f(x)}\right) = x \] ### Step 1: Rewrite the logarithmic equation We can rewrite the logarithmic equation in exponential form: ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}, then f'((1)/( e )) is equal to

If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)}^2 (b) {f(x)}^3 (c) 2 f(x) (d) 3f(x)

If f(x)=9x-x^(2) , x in R , then f(a+1)-f(a-1) is equal to

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If a f(x+1)+b f(1/(x+1))=x,x !=-1,a != b, then f(2) is equal to

If a f(x+1)+b f(1/(x+1))=x,x !=-1,a != b, then f(2) is equal to

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. If f(x) is a polynomial satisfying f(x)f(1/x)=f(x)+f(1/x)a n df(3)=28 ...

    Text Solution

    |

  2. If f(2x+y/8,2x-y/8)=x y , then f(m , n)=0 only when m=n only when m!...

    Text Solution

    |

  3. Let f : R to R be a function such that f(0)=1 and for any x,y in R, f(...

    Text Solution

    |

  4. If f(x+y)=f(x)+f(y)-x y-1AAx , y in Ra n df(1)=1, then the number of ...

    Text Solution

    |

  5. The function f satisfies the functional equation 3f(x)+2f((x+59)/(x1))...

    Text Solution

    |

  6. Let f: RvecR be a continuous and differentiable function such that (f(...

    Text Solution

    |

  7. Let g(x)=f(x)-1. If f(x)+f(1-x)=2AAx in R , then g(x) is symmetrical ...

    Text Solution

    |

  8. If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) ...

    Text Solution

    |

  9. If f(x+1/2)+f(x-1/2)=f(x)fora l lx in R , then the period of f(x) is ...

    Text Solution

    |

  10. If a f(x+1)+b f(1/(x+1))=x,x !=-1,a != b,then f(2) is equal to

    Text Solution

    |

  11. If f(3x+2)+f(3x+29)=0 AAx in R , then the period of f(x) is

    Text Solution

    |

  12. If the graph of y=f(x) is symmetrical about the lines x=1a n dx=2, the...

    Text Solution

    |

  13. Find f(x) when it is given by f(x)=max{x^(3),x^(2),(1)/(64)},AA x in...

    Text Solution

    |

  14. The equation ||x-2|+a|=4 can have four distinct real solutions for x i...

    Text Solution

    |

  15. Number of integral values of k for which the equation 4 cos^(-1)(-|x|)...

    Text Solution

    |

  16. If f(x) is a real-valued function defined as f(x)=In (1-sinx), then t...

    Text Solution

    |

  17. Let f(x)=x+2|x+1|+2|x-1|. If f(x)=k has exactly one real solution, the...

    Text Solution

    |

  18. The number of solutions of 2 cosx=|sinx|, 0 le x le 4 pi, is (a) 0 ...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. If log(4)((2f(x))/(1-f(x)))=x, " then "(f(2010)+f(-2009)) is equal to

    Text Solution

    |