Home
Class 12
MATHS
Let f : R rarr[-1,oo] and f(x)= ln([|sin...

Let `f : R rarr[-1,oo] and f(x)= ln([|sin 2 x|+|cos 2 x|])` (where[.] is greatest integer function), then -

A

`f(x)` has range Z

B

Range of `f(x)` is singleton set

C

`f(x)` is invertible in `[0,(pi)/(4)]`

D

`f(x)` is into function

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \ln(|\sin 2x| + |\cos 2x|) \) and determine its properties, particularly its range. ### Step 1: Analyze the function inside the logarithm We start by examining the expression \( |\sin 2x| + |\cos 2x| \). **Hint:** Recall the properties of sine and cosine functions, particularly their maximum and minimum values. ### Step 2: Determine the maximum and minimum values of \( |\sin 2x| + |\cos 2x| \) The maximum value of \( |\sin 2x| + |\cos 2x| \) occurs when both sine and cosine are at their maximum values. We know that: - The maximum value of \( |\sin 2x| \) is 1. - The maximum value of \( |\cos 2x| \) is also 1. Thus, the maximum value of \( |\sin 2x| + |\cos 2x| \) is: \[ |\sin 2x| + |\cos 2x| \leq 1 + 1 = 2. \] **Hint:** Consider specific angles where sine and cosine take these maximum values. ### Step 3: Find the minimum value of \( |\sin 2x| + |\cos 2x| \) The minimum value occurs when both sine and cosine are zero, but since they cannot be zero simultaneously, we need to check other combinations. The minimum value occurs at: \[ |\sin 2x| + |\cos 2x| \geq 1. \] This can be shown using the Cauchy-Schwarz inequality or by considering specific angles. **Hint:** Think about the unit circle and the angles at which sine and cosine are equal. ### Step 4: Conclude the range of \( |\sin 2x| + |\cos 2x| \) From the above analysis, we conclude: \[ 1 \leq |\sin 2x| + |\cos 2x| \leq 2. \] **Hint:** Remember that the logarithm function is defined only for positive values. ### Step 5: Apply the logarithm Now, we apply the logarithm to the range: \[ \ln(1) \leq \ln(|\sin 2x| + |\cos 2x|) \leq \ln(2). \] This simplifies to: \[ 0 \leq f(x) \leq \ln(2). \] **Hint:** The greatest integer function will affect the final range. ### Step 6: Apply the greatest integer function Since \( f(x) \) can take values from \( 0 \) to \( \ln(2) \), we need to find the greatest integer less than or equal to \( f(x) \). Given that \( \ln(2) \approx 0.693 \), we can conclude: \[ f(x) \in [0, \ln(2)] \implies [f(x)] \in [0, 0]. \] **Hint:** Consider the implications of the greatest integer function on the range. ### Final Conclusion Thus, the range of the function \( f(x) = \ln(|\sin 2x| + |\cos 2x|) \) when applying the greatest integer function is: \[ f(x) \in \{0\}. \] This means that the function is constant at 0 for all \( x \) in \( \mathbb{R} \). ### Summary of Steps: 1. Analyze the function inside the logarithm. 2. Determine the maximum and minimum values of \( |\sin 2x| + |\cos 2x| \). 3. Conclude the range of \( |\sin 2x| + |\cos 2x| \). 4. Apply the logarithm to find the range of \( f(x) \). 5. Apply the greatest integer function to find the final range.

To solve the problem, we need to analyze the function \( f(x) = \ln(|\sin 2x| + |\cos 2x|) \) and determine its properties, particularly its range. ### Step 1: Analyze the function inside the logarithm We start by examining the expression \( |\sin 2x| + |\cos 2x| \). **Hint:** Recall the properties of sine and cosine functions, particularly their maximum and minimum values. ### Step 2: Determine the maximum and minimum values of \( |\sin 2x| + |\cos 2x| \) ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|125 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the greatest integer fucntion), then

Period of f(x) = sin 3x cos[3x]-cos 3x sin [3x] (where[] denotes the greatest integer function), is

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest integer function) then the range of f(x) will be

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Multiple Correct Answer Type
  1. Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer ...

    Text Solution

    |

  2. Let f : R rarr[-1,oo] and f(x)= ln([|sin 2 x|+|cos 2 x|]) (where[.] is...

    Text Solution

    |

  3. If f: RvecNuu{0}, where f (area of triangle joining points P(5,0),Q(8,...

    Text Solution

    |

  4. The domain of the function f(x)=log(e){log(|sinx|)(x^(2)-8x+23)-(3)/...

    Text Solution

    |

  5. Let f(x)=sgn(cot^(-1)x)+tan(pi/2[x]), where [x] is the greatest intege...

    Text Solution

    |

  6. f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x) then

    Text Solution

    |

  7. If the following functions are defined from [-1,1]to[-1,1], select tho...

    Text Solution

    |

  8. Let f(x)={x^2-4x+3,x<3x-4,xgeq3 a n dg(x)={x-3,x<4x^2+2x+2,xgeq4 the...

    Text Solution

    |

  9. Let f(x)="max"(1+s in x ,1,1-cosx),x in [0,2pi],a n dg(x)=max{1,|x-1|}...

    Text Solution

    |

  10. Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1...

    Text Solution

    |

  11. Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot the...

    Text Solution

    |

  12. If f: R^+vecR^+ is a polynomial function satisfying the functional equ...

    Text Solution

    |

  13. f(x)=x^2-2a x+a(a+1),f:[a ,oo)vec[a ,oo)dot If one of the solution of ...

    Text Solution

    |

  14. Which of the following function is/are periodic? (a)f(x)={1,xi sr a ...

    Text Solution

    |

  15. Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n...

    Text Solution

    |

  16. lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is...

    Text Solution

    |

  17. f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer funct...

    Text Solution

    |

  18. [2x]-2[x]=lambda where [.] represents greatest integer function and {....

    Text Solution

    |

  19. The set of all values of x satisfying {x}=x[xx] " where " [xx] repres...

    Text Solution

    |

  20. The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)s...

    Text Solution

    |