Home
Class 12
MATHS
The domain of the function f(x)=log(e)...

The domain of the function
`f(x)=log_(e){log_(|sinx|)(x^(2)-8x+23)-(3)/(log_(2)|sinx|)}`
contains which of the following interval (s) ?

A

`(3, pi)`

B

`(pi,(3pi)/(2))`

C

`((3pi)/(2),5)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the domain of the function \[ f(x) = \log_e \left( \log_{|\sin x|} (x^2 - 8x + 23) - \frac{3}{\log_2 |\sin x|} \right), \] we need to ensure that the expression inside the logarithm is positive. This requires two conditions to be satisfied: 1. The argument of the logarithm must be greater than zero. 2. The base of the logarithm must be valid (i.e., it must be positive and not equal to 1). ### Step 1: Analyze the inner logarithm The inner logarithm is \[ \log_{|\sin x|} (x^2 - 8x + 23). \] For this logarithm to be defined, we need: - \( |\sin x| > 0 \) (which means \( \sin x \neq 0 \)) - \( x^2 - 8x + 23 > 0 \) ### Step 2: Solve the quadratic inequality The quadratic expression \( x^2 - 8x + 23 \) can be analyzed using the discriminant: \[ D = b^2 - 4ac = (-8)^2 - 4 \cdot 1 \cdot 23 = 64 - 92 = -28. \] Since the discriminant is negative, the quadratic has no real roots and is always positive. Therefore, \( x^2 - 8x + 23 > 0 \) for all \( x \). ### Step 3: Analyze the base of the logarithm Next, we need to ensure that \( |\sin x| \) is a valid base for the logarithm: - \( |\sin x| > 0 \) implies \( \sin x \neq 0 \). - \( |\sin x| \neq 1 \) implies \( \sin x \neq 1 \) and \( \sin x \neq -1 \). ### Step 4: Identify intervals where \( \sin x \neq 0 \) The sine function is zero at integer multiples of \( \pi \): \[ x = n\pi, \quad n \in \mathbb{Z}. \] ### Step 5: Identify intervals where \( \sin x \neq 1 \) and \( \sin x \neq -1 \) The sine function equals 1 at \( x = \frac{\pi}{2} + 2k\pi \) and equals -1 at \( x = \frac{3\pi}{2} + 2k\pi \). ### Step 6: Combine the conditions The function \( f(x) \) will be defined in intervals where \( \sin x \) is neither 0 nor ±1. Therefore, we exclude the points: - \( n\pi \) (for \( n \in \mathbb{Z} \)) - \( \frac{\pi}{2} + 2k\pi \) (for \( k \in \mathbb{Z} \)) - \( \frac{3\pi}{2} + 2k\pi \) (for \( k \in \mathbb{Z} \)) ### Step 7: Determine the domain intervals From the analysis, we can conclude that the domain of \( f(x) \) excludes the points where \( \sin x \) is 0 or ±1. Thus, we can express the domain in intervals. The intervals where \( f(x) \) is defined can be written as: \[ (0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi) \cup ( \pi, \frac{3\pi}{2}) \cup (\frac{3\pi}{2}, 2\pi) \cup \ldots \] ### Final Domain The domain of the function \( f(x) \) contains intervals excluding the points where \( \sin x = 0 \) or ±1.

To determine the domain of the function \[ f(x) = \log_e \left( \log_{|\sin x|} (x^2 - 8x + 23) - \frac{3}{\log_2 |\sin x|} \right), \] we need to ensure that the expression inside the logarithm is positive. This requires two conditions to be satisfied: ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|125 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(log)_e{(log)_(|sinx|)(x^2-8x+23)-{3/((log)_2|sinx|)} contains which of the following interval(s)? 3,pi) (b) (pi,(3pi)/2) (c) ((3pi)/2,5) (d) none of these

The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

The domain of the function f(x)=log_(3)[1-log_(6)(x^(2)-7x+16)] is

Find the domain of the function, f(x)=log{log_(abs(sinx)){x^(2)-8x+23)-(3)/(log_(2)abs(sinx))} .

The domain of the function f(x)=log_(10)[1-log_(10)(x^(2)-5x+16)] is

The domain of the function f(x)=sqrt( log_(2) sinx ) , is

The domain of definition of f(x)=log_(3)|log_(e)x| , is

The domain of the function f(x)=sin^(-1)log_(3)(x/3)) is

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

The domain of the function f(x)=(1)/(4-x^(2))+log_(10)(x^(2)-x) is

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Multiple Correct Answer Type
  1. Let f : R rarr[-1,oo] and f(x)= ln([|sin 2 x|+|cos 2 x|]) (where[.] is...

    Text Solution

    |

  2. If f: RvecNuu{0}, where f (area of triangle joining points P(5,0),Q(8,...

    Text Solution

    |

  3. The domain of the function f(x)=log(e){log(|sinx|)(x^(2)-8x+23)-(3)/...

    Text Solution

    |

  4. Let f(x)=sgn(cot^(-1)x)+tan(pi/2[x]), where [x] is the greatest intege...

    Text Solution

    |

  5. f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x) then

    Text Solution

    |

  6. If the following functions are defined from [-1,1]to[-1,1], select tho...

    Text Solution

    |

  7. Let f(x)={x^2-4x+3,x<3x-4,xgeq3 a n dg(x)={x-3,x<4x^2+2x+2,xgeq4 the...

    Text Solution

    |

  8. Let f(x)="max"(1+s in x ,1,1-cosx),x in [0,2pi],a n dg(x)=max{1,|x-1|}...

    Text Solution

    |

  9. Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1...

    Text Solution

    |

  10. Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot the...

    Text Solution

    |

  11. If f: R^+vecR^+ is a polynomial function satisfying the functional equ...

    Text Solution

    |

  12. f(x)=x^2-2a x+a(a+1),f:[a ,oo)vec[a ,oo)dot If one of the solution of ...

    Text Solution

    |

  13. Which of the following function is/are periodic? (a)f(x)={1,xi sr a ...

    Text Solution

    |

  14. Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n...

    Text Solution

    |

  15. lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is...

    Text Solution

    |

  16. f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer funct...

    Text Solution

    |

  17. [2x]-2[x]=lambda where [.] represents greatest integer function and {....

    Text Solution

    |

  18. The set of all values of x satisfying {x}=x[xx] " where " [xx] repres...

    Text Solution

    |

  19. The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)s...

    Text Solution

    |

  20. If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx ,...

    Text Solution

    |