Home
Class 12
MATHS
Let f(x)=sgn(cot^(-1)x)+tan(pi/2[x]), wh...

Let `f(x)=sgn(cot^(-1)x)+tan(pi/2[x]),` where `[x]` is the greatest integer function less than or equal to `x ,` then which of the following alternatives is/are true? `f(x)` is many-one but not an even function. `f(x)` is a periodic function. `f(x)` is a bounded function. The graph of `f(x)` remains above the x-axis.

A

`f(x)` is many-one but not an even function.

B

`f(x)` is a periodic function.

C

`f(x)` is a bounded function.

D

The graph of `f(x)` remains above the x-axis.

Text Solution

AI Generated Solution

The correct Answer is:
To analyze the function \( f(x) = \text{sgn}(\cot^{-1} x) + \tan\left(\frac{\pi}{2} [x]\right) \), where \([x]\) is the greatest integer function, we will evaluate each statement provided in the question step by step. ### Step 1: Determine the Domain of \( f(x) \) 1. **Understanding the components**: - The function \( \cot^{-1}(x) \) is defined for all real \( x \). - The function \( \tan\left(\frac{\pi}{2} [x]\right) \) is defined except when \( \frac{\pi}{2} [x] = (2n + 1)\frac{\pi}{2} \) for \( n \in \mathbb{Z} \). This occurs when \([x] = 2n + 1\). 2. **Finding the domain**: - Thus, \([x]\) must not be an odd integer. Therefore, the domain of \( f(x) \) consists of intervals where \([x]\) is even, which can be expressed as: \[ x \in [2n, 2n + 1) \quad \text{for } n \in \mathbb{Z} \] ### Step 2: Evaluate \( f(x) \) 1. **Evaluating \( \text{sgn}(\cot^{-1} x) \)**: - Since \( \cot^{-1}(x) \) is always positive for \( x > 0 \) and zero for \( x = 0 \), we have: \[ \text{sgn}(\cot^{-1} x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases} \] 2. **Evaluating \( \tan\left(\frac{\pi}{2} [x]\right) \)**: - For even integers \([x] = 2n\), \( \tan\left(\frac{\pi}{2} [x]\right) = \tan(n\pi) = 0\). - Therefore, for \( x \) in the domain: - If \( x > 0 \): \( f(x) = 1 + 0 = 1 \) - If \( x = 0 \): \( f(x) = 0 + 0 = 0 \) - If \( x < 0 \): \( f(x) = -1 + 0 = -1 \) ### Step 3: Analyze the Properties of \( f(x) \) 1. **Many-one but not an even function**: - Since \( f(x) \) takes the same value for all \( x \) in the intervals \( [2n, 2n+1) \) for \( n \geq 0 \) and \( f(x) \) is not symmetric about the y-axis, it is many-one but not an even function. 2. **Periodic function**: - The function \( f(x) \) is periodic with period 2, as it repeats its values every 2 units. 3. **Bounded function**: - The range of \( f(x) \) is limited to values between -1 and 1, thus it is bounded. 4. **Graph remains above the x-axis**: - The function \( f(x) \) takes values of -1, 0, or 1. Thus, it does not always remain above the x-axis since it can take the value -1. ### Conclusion Based on the analysis: - \( f(x) \) is many-one but not an even function. **True** - \( f(x) \) is a periodic function. **True** - \( f(x) \) is a bounded function. **True** - The graph of \( f(x) \) remains above the x-axis. **False** ### Final Result The correct statements are: - \( f(x) \) is many-one but not an even function. - \( f(x) \) is a periodic function. - \( f(x) \) is a bounded function.

To analyze the function \( f(x) = \text{sgn}(\cot^{-1} x) + \tan\left(\frac{\pi}{2} [x]\right) \), where \([x]\) is the greatest integer function, we will evaluate each statement provided in the question step by step. ### Step 1: Determine the Domain of \( f(x) \) 1. **Understanding the components**: - The function \( \cot^{-1}(x) \) is defined for all real \( x \). - The function \( \tan\left(\frac{\pi}{2} [x]\right) \) is defined except when \( \frac{\pi}{2} [x] = (2n + 1)\frac{\pi}{2} \) for \( n \in \mathbb{Z} \). This occurs when \([x] = 2n + 1\). ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|125 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

f(x)= 1/sqrt([x]-x) , where [*] denotes the greatest integeral function less than or equals to x. Then, find the domain of f(x).

Let f(x)={cos[x],xgeq0|x|+a ,x 0) f(x) exists, where [x] denotes the greatest integer function less than or equal to x .

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

The function f(x)=(tan |pi[x-pi]|)/(1+[x]^(2)) , where [x] denotes the greatest integer less than or equal to x, is

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

The domain of the function f(x)=cos^(-1)[secx] , where [x] denotes the greatest integer less than or equal to x, is

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Multiple Correct Answer Type
  1. If f: RvecNuu{0}, where f (area of triangle joining points P(5,0),Q(8,...

    Text Solution

    |

  2. The domain of the function f(x)=log(e){log(|sinx|)(x^(2)-8x+23)-(3)/...

    Text Solution

    |

  3. Let f(x)=sgn(cot^(-1)x)+tan(pi/2[x]), where [x] is the greatest intege...

    Text Solution

    |

  4. f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x) then

    Text Solution

    |

  5. If the following functions are defined from [-1,1]to[-1,1], select tho...

    Text Solution

    |

  6. Let f(x)={x^2-4x+3,x<3x-4,xgeq3 a n dg(x)={x-3,x<4x^2+2x+2,xgeq4 the...

    Text Solution

    |

  7. Let f(x)="max"(1+s in x ,1,1-cosx),x in [0,2pi],a n dg(x)=max{1,|x-1|}...

    Text Solution

    |

  8. Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1...

    Text Solution

    |

  9. Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot the...

    Text Solution

    |

  10. If f: R^+vecR^+ is a polynomial function satisfying the functional equ...

    Text Solution

    |

  11. f(x)=x^2-2a x+a(a+1),f:[a ,oo)vec[a ,oo)dot If one of the solution of ...

    Text Solution

    |

  12. Which of the following function is/are periodic? (a)f(x)={1,xi sr a ...

    Text Solution

    |

  13. Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n...

    Text Solution

    |

  14. lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is...

    Text Solution

    |

  15. f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer funct...

    Text Solution

    |

  16. [2x]-2[x]=lambda where [.] represents greatest integer function and {....

    Text Solution

    |

  17. The set of all values of x satisfying {x}=x[xx] " where " [xx] repres...

    Text Solution

    |

  18. The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)s...

    Text Solution

    |

  19. If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx ,...

    Text Solution

    |

  20. Let f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2))[f(x) is not identically zer...

    Text Solution

    |