Home
Class 12
MATHS
f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x) t...

`f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x)` then

A

fundamental period of `f(x) " is " pi`

B

range of `f(x)" is "[2, oo)`

C

domain of `f(x)` is R

D

`f(x)=2` has 3 solution in `[0, 2pi]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given by the function \( f(x) = \sqrt{1 - \sin^2 x} + \sqrt{1 + \tan^2 x} \), we will simplify and analyze the function step by step. ### Step 1: Simplify \( f(x) \) We start with the expression: \[ f(x) = \sqrt{1 - \sin^2 x} + \sqrt{1 + \tan^2 x} \] Using the Pythagorean identity, we know that: \[ 1 - \sin^2 x = \cos^2 x \] Thus, we can rewrite the first term: \[ \sqrt{1 - \sin^2 x} = \sqrt{\cos^2 x} = |\cos x| \] Next, we simplify the second term. Using the identity \( 1 + \tan^2 x = \sec^2 x \), we have: \[ \sqrt{1 + \tan^2 x} = \sqrt{\sec^2 x} = |\sec x| \] So, we can rewrite \( f(x) \) as: \[ f(x) = |\cos x| + |\sec x| \] ### Step 2: Analyze the function The function \( f(x) \) can be expressed as: \[ f(x) = |\cos x| + \frac{1}{|\cos x|} \] for \( \cos x \neq 0 \). ### Step 3: Determine the range of \( f(x) \) To find the minimum value of \( f(x) \), we can use the AM-GM inequality: \[ |\cos x| + \frac{1}{|\cos x|} \geq 2 \] This inequality holds true for all positive values of \( |\cos x| \). The equality occurs when \( |\cos x| = 1 \), which happens when \( x = n\pi \) for \( n \in \mathbb{Z} \). ### Step 4: Domain of \( f(x) \) The function \( f(x) \) is defined for all \( x \) except where \( \cos x = 0 \). This occurs at: \[ x = \frac{\pi}{2} + n\pi, \quad n \in \mathbb{Z} \] Thus, the domain of \( f(x) \) is: \[ \text{Domain} = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + n\pi \, | \, n \in \mathbb{Z} \right\} \] ### Step 5: Conclusion From the analysis: - The minimum value of \( f(x) \) is 2. - The function is defined for all real numbers except where \( \cos x = 0 \). ### Final Answer Thus, we conclude: 1. The minimum value of \( f(x) \) is 2. 2. The domain of \( f(x) \) is \( \mathbb{R} \setminus \left\{ \frac{\pi}{2} + n\pi \, | \, n \in \mathbb{Z} \right\} \).

To solve the problem given by the function \( f(x) = \sqrt{1 - \sin^2 x} + \sqrt{1 + \tan^2 x} \), we will simplify and analyze the function step by step. ### Step 1: Simplify \( f(x) \) We start with the expression: \[ f(x) = \sqrt{1 - \sin^2 x} + \sqrt{1 + \tan^2 x} \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|125 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f (x)= sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f '(0) is equal to:

If f (x) = sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f (0) is equal to :

Consider a real-valued function f(x)= sqrt(sin^-1 x + 2) + sqrt(1 – sin^-1x) then The domain of definition of f(x) is

Consider a real - valued function f(x) = sqrt(sin^(-1) x + 2) + sqrt(1 - sin^(-1)x) The range of f (x) is

lim _(xto0) (""^(3)sqrt(1+sin ^(2)x )- ""^(4) sqrt(1-2 tan x))/(sin x+ tan ^(2) x) is equal to:

f(x)=sqrt(1-x^(2)), g(x)=sqrt(1-x)*sqrt(1+x) . Identical functions or not?

Draw the graph of f(x) = (sin x)/(sqrt(1 + tan^(2)x))- (cos x)/(sqrt(1 + cot^(2)x)) . Then find the range of f(x).

If f(x)=sqrt(1-sin2x), then f'(x) equals

if: f(x)=(sinx)/(sqrt(1+tan^2x))-(cosx)/(sqrt(1+cot^2x)), then find the range of f(x)

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Multiple Correct Answer Type
  1. The domain of the function f(x)=log(e){log(|sinx|)(x^(2)-8x+23)-(3)/...

    Text Solution

    |

  2. Let f(x)=sgn(cot^(-1)x)+tan(pi/2[x]), where [x] is the greatest intege...

    Text Solution

    |

  3. f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x) then

    Text Solution

    |

  4. If the following functions are defined from [-1,1]to[-1,1], select tho...

    Text Solution

    |

  5. Let f(x)={x^2-4x+3,x<3x-4,xgeq3 a n dg(x)={x-3,x<4x^2+2x+2,xgeq4 the...

    Text Solution

    |

  6. Let f(x)="max"(1+s in x ,1,1-cosx),x in [0,2pi],a n dg(x)=max{1,|x-1|}...

    Text Solution

    |

  7. Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1...

    Text Solution

    |

  8. Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot the...

    Text Solution

    |

  9. If f: R^+vecR^+ is a polynomial function satisfying the functional equ...

    Text Solution

    |

  10. f(x)=x^2-2a x+a(a+1),f:[a ,oo)vec[a ,oo)dot If one of the solution of ...

    Text Solution

    |

  11. Which of the following function is/are periodic? (a)f(x)={1,xi sr a ...

    Text Solution

    |

  12. Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n...

    Text Solution

    |

  13. lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is...

    Text Solution

    |

  14. f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer funct...

    Text Solution

    |

  15. [2x]-2[x]=lambda where [.] represents greatest integer function and {....

    Text Solution

    |

  16. The set of all values of x satisfying {x}=x[xx] " where " [xx] repres...

    Text Solution

    |

  17. The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)s...

    Text Solution

    |

  18. If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx ,...

    Text Solution

    |

  19. Let f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2))[f(x) is not identically zer...

    Text Solution

    |

  20. Let f: RvecR be a function defined by f(x+1)=(f(x)-5)/(f(x)-3)AAx in ...

    Text Solution

    |