Home
Class 12
MATHS
Let f(x)="max"(1+s in x ,1,1-cosx),x in ...

Let `f(x)="max"(1+s in x ,1,1-cosx),x in [0,2pi],a n dg(x)=max{1,|x-1|}, x in Rdot` Then `g(f(0))=1` (b) `g(f(1))=1` `f(f(1))=1` (d) `f(g(0))= 1 + sin1`

A

`g(f(0))=1`

B

`g(f(1))=1`

C

`f(f(1))=1`

D

`f(g(0))=1+sin 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will evaluate the functions \( f(x) \) and \( g(x) \) as defined in the question. ### Step 1: Define the Functions The functions are defined as follows: - \( f(x) = \max(1 + \sin x, 1, 1 - \cos x) \) for \( x \in [0, 2\pi] \) - \( g(x) = \max(1, |x - 1|) \) for \( x \in \mathbb{R} \) ### Step 2: Calculate \( f(0) \) Substituting \( x = 0 \) into \( f(x) \): \[ f(0) = \max(1 + \sin(0), 1, 1 - \cos(0)) = \max(1 + 0, 1, 1 - 1) = \max(1, 1, 0) = 1 \] ### Step 3: Calculate \( g(f(0)) \) Since \( f(0) = 1 \): \[ g(f(0)) = g(1) = \max(1, |1 - 1|) = \max(1, 0) = 1 \] ### Step 4: Calculate \( f(1) \) Substituting \( x = 1 \) into \( f(x) \): \[ f(1) = \max(1 + \sin(1), 1, 1 - \cos(1)) \] Calculating the values: - \( 1 + \sin(1) \) (approximately 1.8415) - \( 1 \) - \( 1 - \cos(1) \) (approximately 0.4597) Thus, \[ f(1) = \max(1.8415, 1, 0.4597) = 1 + \sin(1) \] ### Step 5: Calculate \( g(f(1)) \) Now substituting \( f(1) = 1 + \sin(1) \): \[ g(f(1)) = g(1 + \sin(1)) = \max(1, |(1 + \sin(1)) - 1|) = \max(1, \sin(1)) \] Since \( \sin(1) \) is approximately 0.8415, we have: \[ g(f(1)) = \max(1, 0.8415) = 1 \] ### Step 6: Calculate \( f(f(1)) \) Since \( f(1) = 1 + \sin(1) \): \[ f(f(1)) = f(1 + \sin(1)) = \max(1 + \sin(1 + \sin(1)), 1, 1 - \cos(1 + \sin(1))) \] However, we can see that \( f(1 + \sin(1)) \) will be greater than 1, and thus will not equal 1. ### Step 7: Calculate \( f(g(0)) \) First, calculate \( g(0) \): \[ g(0) = \max(1, |0 - 1|) = \max(1, 1) = 1 \] Then, substituting into \( f \): \[ f(g(0)) = f(1) = 1 + \sin(1) \] ### Summary of Results - \( g(f(0)) = 1 \) (True) - \( g(f(1)) = 1 \) (True) - \( f(f(1)) \neq 1 \) (False) - \( f(g(0)) = 1 + \sin(1) \) (True) ### Final Answers - (a) True: \( g(f(0)) = 1 \) - (b) True: \( g(f(1)) = 1 \) - (c) False: \( f(f(1)) \neq 1 \) - (d) True: \( f(g(0)) = 1 + \sin(1) \)

To solve the problem step by step, we will evaluate the functions \( f(x) \) and \( g(x) \) as defined in the question. ### Step 1: Define the Functions The functions are defined as follows: - \( f(x) = \max(1 + \sin x, 1, 1 - \cos x) \) for \( x \in [0, 2\pi] \) - \( g(x) = \max(1, |x - 1|) \) for \( x \in \mathbb{R} \) ### Step 2: Calculate \( f(0) \) ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|125 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)="max"{1+sin x ,1,1-cosx},x in [0,2pi],a n d g(x)=max{1,|x-1|}, x in Rdot Then (a) g(f(0))=1 (b) g(f(1))=1 (c) f(f(1))=1 (d) f(g(0))=1+sin1

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

Let f(x)=x^2-2x ,x in R ,a n dg(x)=f(f(x)-1)+f(5-f(x))dot Show that g(x)geq0AAx in Rdot

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Let g(x)gt0andf'(x)lt0,AAx in R, then show g(f(x+1))ltg(f(x-1)) f(g(x+1))ltf(g(x-1))

Let g(x)=f(x)+f(1-x) and f''(x)<0 , when x in (0,1) . Then f(x) is

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

Let f(x)=(sinx)/x and g(x)=|x.f(x)|+||x-2|-1|. Then, in the interval (0,3pi) g(x) is :

The distinct linear functions which map [-1, 1] onto [0, 2] are f(x)=x+1,\ \ g(x)=-x+1 (b) f(x)=x-1,\ \ g(x)=x+1 (c) f(x)=-x-1,\ \ g(x)=x-1 (d) none of these

If f(x)=(x+3)/(5x^2+x-1)&g(x)=(2x+3x^2)/(20+2x-x^2) such f(x)a n dg(x) are differentiable functions in their domains, then which of the following is/are true f(2)+g(1)=0 (b) f(2) - g(1)=0 1f(1)+g(2)=0 (d) f(1) - g(2)=0

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Multiple Correct Answer Type
  1. If the following functions are defined from [-1,1]to[-1,1], select tho...

    Text Solution

    |

  2. Let f(x)={x^2-4x+3,x<3x-4,xgeq3 a n dg(x)={x-3,x<4x^2+2x+2,xgeq4 the...

    Text Solution

    |

  3. Let f(x)="max"(1+s in x ,1,1-cosx),x in [0,2pi],a n dg(x)=max{1,|x-1|}...

    Text Solution

    |

  4. Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1...

    Text Solution

    |

  5. Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot the...

    Text Solution

    |

  6. If f: R^+vecR^+ is a polynomial function satisfying the functional equ...

    Text Solution

    |

  7. f(x)=x^2-2a x+a(a+1),f:[a ,oo)vec[a ,oo)dot If one of the solution of ...

    Text Solution

    |

  8. Which of the following function is/are periodic? (a)f(x)={1,xi sr a ...

    Text Solution

    |

  9. Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n...

    Text Solution

    |

  10. lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is...

    Text Solution

    |

  11. f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer funct...

    Text Solution

    |

  12. [2x]-2[x]=lambda where [.] represents greatest integer function and {....

    Text Solution

    |

  13. The set of all values of x satisfying {x}=x[xx] " where " [xx] repres...

    Text Solution

    |

  14. The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)s...

    Text Solution

    |

  15. If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx ,...

    Text Solution

    |

  16. Let f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2))[f(x) is not identically zer...

    Text Solution

    |

  17. Let f: RvecR be a function defined by f(x+1)=(f(x)-5)/(f(x)-3)AAx in ...

    Text Solution

    |

  18. Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)...

    Text Solution

    |

  19. Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1+x)...

    Text Solution

    |

  20. The figure illustrates the graph of the function y=f(x) defined in [-3...

    Text Solution

    |