Home
Class 12
MATHS
Consider the function y =f(x) satisfyin...

Consider the function `y =f(x)` satisfying the condition `f(x+1/x)=x^2+1/(x^2)(x!=0)`. Then the

A

domain of `f(x)` is R

B

domain of `f " is " R-(-2,2)`

C

range of `f(x)" is " [-2,oo)`

D

range of `f(x) " is " [2,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) given by the condition: \[ f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2} \quad (x \neq 0) \] ### Step 1: Rewrite the right-hand side We start with the right-hand side of the equation: \[ x^2 + \frac{1}{x^2} \] We can rewrite this expression by adding and subtracting 2: \[ x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2 \] This allows us to express the function in a more manageable form. ### Step 2: Introduce a new variable Let: \[ t = x + \frac{1}{x} \] Then, we can rewrite the equation as: \[ f(t) = t^2 - 2 \] ### Step 3: Determine the domain of \( t \) Next, we need to find the range of \( t = x + \frac{1}{x} \) for \( x \neq 0 \). - For \( x > 0 \), using the AM-GM inequality, we have: \[ x + \frac{1}{x} \geq 2 \] Thus, \( t \geq 2 \). - For \( x < 0 \), we can let \( x = -u \) where \( u > 0 \): \[ t = -u - \frac{1}{u} \quad (u > 0) \] The expression \( -u - \frac{1}{u} \) approaches \( -\infty \) as \( u \) approaches \( 0 \) and has a maximum value of \( -2 \) when \( u = 1 \). Thus, for \( x < 0 \), \( t \leq -2 \). Combining both cases, we find that: \[ t \in (-\infty, -2] \cup [2, \infty) \] ### Step 4: Find the range of \( f(t) \) Now, we need to find the range of \( f(t) = t^2 - 2 \). - For \( t \in (-\infty, -2] \): \[ f(t) = t^2 - 2 \geq (-2)^2 - 2 = 4 - 2 = 2 \] - For \( t \in [2, \infty) \): \[ f(t) = t^2 - 2 \geq 2^2 - 2 = 4 - 2 = 2 \] Thus, in both cases, the minimum value of \( f(t) \) is 2. As \( t \) increases or decreases without bound, \( f(t) \) approaches infinity. ### Conclusion The range of the function \( f(x) \) is: \[ [2, \infty) \]

To solve the problem, we need to analyze the function \( f(x) \) given by the condition: \[ f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2} \quad (x \neq 0) \] ### Step 1: Rewrite the right-hand side ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|125 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Consider the function y=f(x) satisfying the condition f(x+1/x)=x^2+1//x^2(x!=0)dot Then the (a) domain of f(x)i sR (b)domain of f(x)i sR-(-2,2) (c)range of f(x)i s[-2,oo] (d)range of f(x)i s(2,oo)

If a function satisfies the condition f(x+1/x)=x^(2)+1/(x^(2)),xne0 , then domain of f(x) is

The function f(x) satisfying the equation f^2 (x) + 4 f'(x) f(x) + (f'(x))^2 = 0

If f(x) is a polynomial function satisfying the condition f(x) .f((1)/(x)) = f(x) + f((1)/(x)) and f(2) = 9 then

Consider the function f(x) satisfying the identity f(x) +f((x-1)/(x))=1+x AA x in R -{0,1}, and g(x)=2f(x)-x+1. The domain of y=sqrt(g(x)) is

A polynomial function f(x) satisfies the condition f(x)f(1/x)=f(x)+f(1/x) for all x inR , x!=0 . If f(3)=-26, then f(4)=

A polynomial function f(x) satisfies the condition f(x)f((1)/(x))=f(x)+f((1)/(x)) . If f(10)=1001, then f(20)=

Consider the function f(x) satisfyig the identity f(x)+f((x-1)/x)=1+x, AA x in R-{0,1} and g(x)=2f(x)-x+1 Then range of y=g(x) is:

The function f (x) satisfy the equation f (1-x)+ 2f (x) =3x AA x in R, then f (0)=

Let f(x) be a function satisfying the condition f(-x) = f(x) for all real x. If f'(0) exists, then its value is equal to

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Multiple Correct Answer Type
  1. Let f(x)={x^2-4x+3,x<3x-4,xgeq3 a n dg(x)={x-3,x<4x^2+2x+2,xgeq4 the...

    Text Solution

    |

  2. Let f(x)="max"(1+s in x ,1,1-cosx),x in [0,2pi],a n dg(x)=max{1,|x-1|}...

    Text Solution

    |

  3. Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1...

    Text Solution

    |

  4. Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot the...

    Text Solution

    |

  5. If f: R^+vecR^+ is a polynomial function satisfying the functional equ...

    Text Solution

    |

  6. f(x)=x^2-2a x+a(a+1),f:[a ,oo)vec[a ,oo)dot If one of the solution of ...

    Text Solution

    |

  7. Which of the following function is/are periodic? (a)f(x)={1,xi sr a ...

    Text Solution

    |

  8. Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n...

    Text Solution

    |

  9. lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is...

    Text Solution

    |

  10. f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer funct...

    Text Solution

    |

  11. [2x]-2[x]=lambda where [.] represents greatest integer function and {....

    Text Solution

    |

  12. The set of all values of x satisfying {x}=x[xx] " where " [xx] repres...

    Text Solution

    |

  13. The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)s...

    Text Solution

    |

  14. If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx ,...

    Text Solution

    |

  15. Let f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2))[f(x) is not identically zer...

    Text Solution

    |

  16. Let f: RvecR be a function defined by f(x+1)=(f(x)-5)/(f(x)-3)AAx in ...

    Text Solution

    |

  17. Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)...

    Text Solution

    |

  18. Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1+x)...

    Text Solution

    |

  19. The figure illustrates the graph of the function y=f(x) defined in [-3...

    Text Solution

    |

  20. If graph of a function f(x) which is defined in [-1, 4] is shown in th...

    Text Solution

    |