Home
Class 12
MATHS
Let f(x)=(3)/(4)x+1,f^(n)(x) be defined ...

Let `f(x)=(3)/(4)x+1,f^(n)(x)` be defined as `f^(2)(x)=f(f(x)),` and for `n ge 2, f^(n+1)(x)=f(f^(n)(x))." If " lambda =lim_(n to oo) f^(n)(x),` then

A

`lambda` is independent of x

B

`lambda` is a linear polynomial in x

C

the line `y=lambda` has slope 0

D

the line `4y=lambda` touches the unit circle with center at the origin.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \frac{3}{4}x + 1 \) and find the limit \( \lambda = \lim_{n \to \infty} f^{(n)}(x) \). ### Step-by-step Solution: 1. **Define the Function**: We start with the function: \[ f(x) = \frac{3}{4}x + 1 \] 2. **Calculate \( f^2(x) \)**: To find \( f^2(x) \), we apply \( f \) to itself: \[ f^2(x) = f(f(x)) = f\left(\frac{3}{4}x + 1\right) \] Substituting into \( f \): \[ f^2(x) = \frac{3}{4}\left(\frac{3}{4}x + 1\right) + 1 = \frac{3}{4} \cdot \frac{3}{4}x + \frac{3}{4} + 1 = \frac{9}{16}x + \frac{3}{4} + 1 \] Simplifying: \[ f^2(x) = \frac{9}{16}x + \frac{7}{4} \] 3. **Calculate \( f^3(x) \)**: Now we find \( f^3(x) = f(f^2(x)) \): \[ f^3(x) = f\left(\frac{9}{16}x + \frac{7}{4}\right) = \frac{3}{4}\left(\frac{9}{16}x + \frac{7}{4}\right) + 1 \] Simplifying: \[ f^3(x) = \frac{27}{64}x + \frac{21}{16} + 1 = \frac{27}{64}x + \frac{37}{16} \] 4. **Generalizing \( f^n(x) \)**: We can observe a pattern. The \( n \)-th iteration seems to follow: \[ f^{(n)}(x) = \left(\frac{3}{4}\right)^n x + C_n \] where \( C_n \) is a constant that we need to determine. 5. **Finding \( C_n \)**: From our calculations, we can see that: \[ C_n = \frac{3}{4}C_{n-1} + 1 \] This is a recursive relation. If we solve this, we can find \( C_n \) explicitly. 6. **Finding the Limit**: As \( n \to \infty \), \( \left(\frac{3}{4}\right)^n \to 0 \). Therefore, we need to find \( \lim_{n \to \infty} C_n \). Solving the recursion: \[ C_n = \frac{3}{4}C_{n-1} + 1 \] Assuming \( C_n \) approaches a limit \( L \): \[ L = \frac{3}{4}L + 1 \implies L - \frac{3}{4}L = 1 \implies \frac{1}{4}L = 1 \implies L = 4 \] 7. **Final Result**: Thus, we have: \[ \lambda = \lim_{n \to \infty} f^{(n)}(x) = 0 + 4 = 4 \] ### Conclusion: The limit \( \lambda \) is: \[ \lambda = 4 \]

To solve the problem, we need to analyze the function \( f(x) = \frac{3}{4}x + 1 \) and find the limit \( \lambda = \lim_{n \to \infty} f^{(n)}(x) \). ### Step-by-step Solution: 1. **Define the Function**: We start with the function: \[ f(x) = \frac{3}{4}x + 1 ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|125 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then f has

Let f(x)= lim_(n->oo)(sinx)^(2n)

Let f:N->N be defined by f(x)=x^2+x+1,x in N . Then f(x) is

Let f : N rarr N be defined as f(x) = 2x for all x in N , then f is

Let f(x)=(1)/(1+x) and let g(x,n)=f(f(f(….(x)))) , then lim_(nrarroo)g(x, n) at x = 1 is

If f: N to N defined as f(x)=x^(2)AA x in N, then f is :

If the function f: R-{(2005)/(153)}vecR-{(2005)/(153)} , defined by f(x)=(2005 x+153)/(153 x-2005) , then- (a) f^(-1)(x)=f(x) (b) f^(2014)(x)=x ,w h e r ef^n(x)=f(f(f(x)))n brackets (c)( f^(2013)(x)=x ,w h e r ef^n(x)=f(f(f(x)))n brackets (d) f^(-1)(x)=-f(x)

Let f(x)=x+f(x-1) for AAx in R . If f(0)=1,f i n d \ f(100) .

Let f :R -{(3)/(2)}to R, f (x) = (3x+5)/(2x-3).Let f _(1) (x)=f (x), f_(n) (x)=f (f _(n-1) (x))) for pige 2, n in N, then f _(2008) (x)+ f _(2009) (x)=

f:N to N, where f(x)=x-(-1)^(x) , Then f is

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Multiple Correct Answer Type
  1. Let f(x)={x^2-4x+3,x<3x-4,xgeq3 a n dg(x)={x-3,x<4x^2+2x+2,xgeq4 the...

    Text Solution

    |

  2. Let f(x)="max"(1+s in x ,1,1-cosx),x in [0,2pi],a n dg(x)=max{1,|x-1|}...

    Text Solution

    |

  3. Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1...

    Text Solution

    |

  4. Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot the...

    Text Solution

    |

  5. If f: R^+vecR^+ is a polynomial function satisfying the functional equ...

    Text Solution

    |

  6. f(x)=x^2-2a x+a(a+1),f:[a ,oo)vec[a ,oo)dot If one of the solution of ...

    Text Solution

    |

  7. Which of the following function is/are periodic? (a)f(x)={1,xi sr a ...

    Text Solution

    |

  8. Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n...

    Text Solution

    |

  9. lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is...

    Text Solution

    |

  10. f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer funct...

    Text Solution

    |

  11. [2x]-2[x]=lambda where [.] represents greatest integer function and {....

    Text Solution

    |

  12. The set of all values of x satisfying {x}=x[xx] " where " [xx] repres...

    Text Solution

    |

  13. The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)s...

    Text Solution

    |

  14. If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx ,...

    Text Solution

    |

  15. Let f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2))[f(x) is not identically zer...

    Text Solution

    |

  16. Let f: RvecR be a function defined by f(x+1)=(f(x)-5)/(f(x)-3)AAx in ...

    Text Solution

    |

  17. Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)...

    Text Solution

    |

  18. Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1+x)...

    Text Solution

    |

  19. The figure illustrates the graph of the function y=f(x) defined in [-3...

    Text Solution

    |

  20. If graph of a function f(x) which is defined in [-1, 4] is shown in th...

    Text Solution

    |