Home
Class 12
MATHS
lf the fundamental period of function f(...

lf the fundamental period of function `f(x)=sinx + cos(sqrt(4-a^2))x` is `4pi`, then the value of a is/are

A

`(sqrt(15))/(2)`

B

`-(sqrt(15))/(2)`

C

`(sqrt(7))/(2)`

D

`-(sqrt(7))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) such that the fundamental period of the function \( f(x) = \sin x + \cos(\sqrt{4 - a^2} \cdot x) \) is \( 4\pi \). ### Step-by-Step Solution: 1. **Identify the Period of Each Component**: - The period of \( \sin x \) is \( 2\pi \). - The period of \( \cos(kx) \) is given by \( \frac{2\pi}{|k|} \). Here, \( k = \sqrt{4 - a^2} \), so the period of \( \cos(\sqrt{4 - a^2} \cdot x) \) is \( \frac{2\pi}{\sqrt{4 - a^2}} \). 2. **Determine the Fundamental Period**: - The fundamental period of \( f(x) \) is the least common multiple (LCM) of the periods of its components. Therefore, we need to find the LCM of \( 2\pi \) and \( \frac{2\pi}{\sqrt{4 - a^2}} \). 3. **Set Up the Equation**: - We know that the fundamental period is given as \( 4\pi \). Thus, we set up the equation: \[ \text{LCM}(2\pi, \frac{2\pi}{\sqrt{4 - a^2}}) = 4\pi \] 4. **Finding the LCM**: - The LCM of \( 2\pi \) and \( \frac{2\pi}{\sqrt{4 - a^2}} \) can be expressed as: \[ \text{LCM}(2\pi, \frac{2\pi}{\sqrt{4 - a^2}}) = 2\pi \cdot \frac{1}{\sqrt{4 - a^2}} \text{ if } \sqrt{4 - a^2} < 2 \] - For the LCM to equal \( 4\pi \), we have: \[ 2\pi \cdot \frac{1}{\sqrt{4 - a^2}} = 4\pi \] 5. **Simplifying the Equation**: - Dividing both sides by \( 2\pi \): \[ \frac{1}{\sqrt{4 - a^2}} = 2 \] - Taking the reciprocal: \[ \sqrt{4 - a^2} = \frac{1}{2} \] 6. **Squaring Both Sides**: - Squaring both sides gives: \[ 4 - a^2 = \frac{1}{4} \] 7. **Rearranging the Equation**: - Rearranging gives: \[ 4 - \frac{1}{4} = a^2 \] - Converting \( 4 \) to a fraction: \[ \frac{16}{4} - \frac{1}{4} = a^2 \] - Thus: \[ \frac{15}{4} = a^2 \] 8. **Finding the Values of \( a \)**: - Taking the square root: \[ a = \pm \sqrt{\frac{15}{4}} = \pm \frac{\sqrt{15}}{2} \] ### Final Answer: The values of \( a \) are \( a = \frac{\sqrt{15}}{2} \) and \( a = -\frac{\sqrt{15}}{2} \).

To solve the problem, we need to find the value of \( a \) such that the fundamental period of the function \( f(x) = \sin x + \cos(\sqrt{4 - a^2} \cdot x) \) is \( 4\pi \). ### Step-by-Step Solution: 1. **Identify the Period of Each Component**: - The period of \( \sin x \) is \( 2\pi \). - The period of \( \cos(kx) \) is given by \( \frac{2\pi}{|k|} \). Here, \( k = \sqrt{4 - a^2} \), so the period of \( \cos(\sqrt{4 - a^2} \cdot x) \) is \( \frac{2\pi}{\sqrt{4 - a^2}} \). ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|125 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

The fundamental period of the function y=sin^2((sqrt(2)x+3)/(6pi)) is lambdapi^2 then the value of lambda/(sqrt(2)) is_____

Find the fundamental period of the following function: f(x)=2+3cos(x-2)

Find the fundamental period of the following function: f(x)=sin 3x+cos^(2)x+|tanx|

Prove that period of function f(x)=sinx, x in R " is " 2pi.

Find the fundamental period of the following function: f(x)=(sin12x)/(1+cos^(2)6x)

If theta is the fundamental period of the function f(x) = sin^99 x+sin^99(x+(2pi)/3)+sin^99(x+(4pi)/3) , then the complex number z=|z|(cos theta+i sintheta) lies in the quadrant number.

If the domain of the function f(x) = sqrt(3 cos^(-1) (4x) - pi) is [a, b] , then the value of (4a + 64b) is ___

Period of the function f(x) = sin((pi x)/(2)) cos((pi x)/(2)) is

If f(x) = 2 sinx, g(x) = cos^(2) x , then the value of (f+g)((pi)/(3))

The fundamental period of the function f(x)=4cos^4((x-pi)/(4pi^2))-2cos((x-pi)/(2pi^2)) is equal to :

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Multiple Correct Answer Type
  1. Let f(x)={x^2-4x+3,x<3x-4,xgeq3 a n dg(x)={x-3,x<4x^2+2x+2,xgeq4 the...

    Text Solution

    |

  2. Let f(x)="max"(1+s in x ,1,1-cosx),x in [0,2pi],a n dg(x)=max{1,|x-1|}...

    Text Solution

    |

  3. Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1...

    Text Solution

    |

  4. Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot the...

    Text Solution

    |

  5. If f: R^+vecR^+ is a polynomial function satisfying the functional equ...

    Text Solution

    |

  6. f(x)=x^2-2a x+a(a+1),f:[a ,oo)vec[a ,oo)dot If one of the solution of ...

    Text Solution

    |

  7. Which of the following function is/are periodic? (a)f(x)={1,xi sr a ...

    Text Solution

    |

  8. Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n...

    Text Solution

    |

  9. lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is...

    Text Solution

    |

  10. f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer funct...

    Text Solution

    |

  11. [2x]-2[x]=lambda where [.] represents greatest integer function and {....

    Text Solution

    |

  12. The set of all values of x satisfying {x}=x[xx] " where " [xx] repres...

    Text Solution

    |

  13. The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)s...

    Text Solution

    |

  14. If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx ,...

    Text Solution

    |

  15. Let f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2))[f(x) is not identically zer...

    Text Solution

    |

  16. Let f: RvecR be a function defined by f(x+1)=(f(x)-5)/(f(x)-3)AAx in ...

    Text Solution

    |

  17. Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)...

    Text Solution

    |

  18. Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1+x)...

    Text Solution

    |

  19. The figure illustrates the graph of the function y=f(x) defined in [-3...

    Text Solution

    |

  20. If graph of a function f(x) which is defined in [-1, 4] is shown in th...

    Text Solution

    |