Home
Class 12
MATHS
f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] wh...

`f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)]` where [.] greatest integer function then

A

(a) domain of `f(x) " is " (-log_(e)2,log_(e)2)`

B

(b) range of `f(x) ={pi}`

C

(c) Range of `f(x) " is " {(pi)/(2),pi}`

D

(d) `f(x) =cos^(-1)x` has only one solution

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( f(x) = \sin^{-1}[\lfloor e^x \rfloor] + \sin^{-1}[\lfloor e^{-x} \rfloor] \), we will follow these steps: ### Step 1: Understand the Greatest Integer Function The greatest integer function, denoted as \( \lfloor x \rfloor \), gives the largest integer less than or equal to \( x \). Thus, we need to evaluate \( \lfloor e^x \rfloor \) and \( \lfloor e^{-x} \rfloor \). ### Step 2: Determine the Range of \( e^x \) and \( e^{-x} \) - As \( x \) varies over all real numbers, \( e^x \) ranges from \( 0 \) to \( \infty \). - Consequently, \( e^{-x} \) ranges from \( \infty \) to \( 0 \). ### Step 3: Analyze \( \lfloor e^x \rfloor \) and \( \lfloor e^{-x} \rfloor \) - For \( x < 0 \), \( e^x < 1 \) so \( \lfloor e^x \rfloor = 0 \). - For \( x = 0 \), \( e^0 = 1 \) so \( \lfloor e^0 \rfloor = 1 \). - For \( x > 0 \), \( e^x \) will be greater than \( 1 \) and will take integer values starting from \( 1 \). - For \( e^{-x} \): - For \( x < 0 \), \( e^{-x} > 1 \) so \( \lfloor e^{-x} \rfloor \) will take values starting from \( 1 \). - For \( x = 0 \), \( e^{-0} = 1 \) so \( \lfloor e^{-0} \rfloor = 1 \). - For \( x > 0 \), \( e^{-x} < 1 \) so \( \lfloor e^{-x} \rfloor = 0 \). ### Step 4: Evaluate \( f(x) \) for Different Intervals 1. **For \( x < 0 \):** - \( \lfloor e^x \rfloor = 0 \) - \( \lfloor e^{-x} \rfloor \geq 1 \) - Thus, \( f(x) = \sin^{-1}(0) + \sin^{-1}(\lfloor e^{-x} \rfloor) = 0 + \sin^{-1}(1) = \frac{\pi}{2} \). 2. **For \( x = 0 \):** - \( \lfloor e^0 \rfloor = 1 \) - \( \lfloor e^{-0} \rfloor = 1 \) - Thus, \( f(0) = \sin^{-1}(1) + \sin^{-1}(1) = \frac{\pi}{2} + \frac{\pi}{2} = \pi \). 3. **For \( x > 0 \):** - \( \lfloor e^x \rfloor \geq 1 \) - \( \lfloor e^{-x} \rfloor = 0 \) - Thus, \( f(x) = \sin^{-1}(\lfloor e^x \rfloor) + \sin^{-1}(0) = \sin^{-1}(\lfloor e^x \rfloor) + 0 = \sin^{-1}(\lfloor e^x \rfloor) \). ### Step 5: Determine the Domain and Range - **Domain:** The function \( f(x) \) is defined for all \( x \in \mathbb{R} \). - **Range:** - For \( x < 0 \), \( f(x) = \frac{\pi}{2} \). - For \( x = 0 \), \( f(0) = \pi \). - For \( x > 0 \), as \( e^x \) increases, \( \lfloor e^x \rfloor \) takes values starting from \( 1 \) and goes to \( \infty \), thus \( f(x) \) can take values from \( \frac{\pi}{2} \) to \( \frac{\pi}{2} + \frac{\pi}{2} \). ### Conclusion - **Domain:** \( \mathbb{R} \) - **Range:** \( \left[ \frac{\pi}{2}, \pi \right] \)

To solve the problem \( f(x) = \sin^{-1}[\lfloor e^x \rfloor] + \sin^{-1}[\lfloor e^{-x} \rfloor] \), we will follow these steps: ### Step 1: Understand the Greatest Integer Function The greatest integer function, denoted as \( \lfloor x \rfloor \), gives the largest integer less than or equal to \( x \). Thus, we need to evaluate \( \lfloor e^x \rfloor \) and \( \lfloor e^{-x} \rfloor \). ### Step 2: Determine the Range of \( e^x \) and \( e^{-x} \) - As \( x \) varies over all real numbers, \( e^x \) ranges from \( 0 \) to \( \infty \). - Consequently, \( e^{-x} \) ranges from \( \infty \) to \( 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|125 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

If f(x)=sin([x]pi)/(x^2+x+1) where [.] denotes the greatest integer function, then (A) f is one-one (B) f is not one-one and not constant (C) f is a constant function (D) none of these

Let f(x)=sin x,g(x)=[x+1] and h(x)=gof(x) where [.] the greatest integer function. Then h'((pi)/(2)) is

STATEMENT -1 : If [sin^(-1)x] gt [cos^(-1)x] ,where [] represents the greatest integer function, then x in [sin1,1] is and STATEMENT -2 : cos^(-1)(cosx)=x,x in [-1,1]

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Multiple Correct Answer Type
  1. Let f(x)={x^2-4x+3,x<3x-4,xgeq3 a n dg(x)={x-3,x<4x^2+2x+2,xgeq4 the...

    Text Solution

    |

  2. Let f(x)="max"(1+s in x ,1,1-cosx),x in [0,2pi],a n dg(x)=max{1,|x-1|}...

    Text Solution

    |

  3. Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1...

    Text Solution

    |

  4. Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot the...

    Text Solution

    |

  5. If f: R^+vecR^+ is a polynomial function satisfying the functional equ...

    Text Solution

    |

  6. f(x)=x^2-2a x+a(a+1),f:[a ,oo)vec[a ,oo)dot If one of the solution of ...

    Text Solution

    |

  7. Which of the following function is/are periodic? (a)f(x)={1,xi sr a ...

    Text Solution

    |

  8. Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n...

    Text Solution

    |

  9. lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is...

    Text Solution

    |

  10. f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer funct...

    Text Solution

    |

  11. [2x]-2[x]=lambda where [.] represents greatest integer function and {....

    Text Solution

    |

  12. The set of all values of x satisfying {x}=x[xx] " where " [xx] repres...

    Text Solution

    |

  13. The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)s...

    Text Solution

    |

  14. If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx ,...

    Text Solution

    |

  15. Let f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2))[f(x) is not identically zer...

    Text Solution

    |

  16. Let f: RvecR be a function defined by f(x+1)=(f(x)-5)/(f(x)-3)AAx in ...

    Text Solution

    |

  17. Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)...

    Text Solution

    |

  18. Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1+x)...

    Text Solution

    |

  19. The figure illustrates the graph of the function y=f(x) defined in [-3...

    Text Solution

    |

  20. If graph of a function f(x) which is defined in [-1, 4] is shown in th...

    Text Solution

    |