Home
Class 12
MATHS
The function 'g' defined by g(x)= sin(si...

The function 'g' defined by `g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)sqrt({x}))-1` (where {x} denotes the functional part function) is (1) an even function (2) a periodic function (3) an odd function (4) neither even nor odd

A

an even function

B

periodic function

C

odd function

D

Neither even nor odd

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the function \( g(x) = \sin(\sin^{-1}(\sqrt{x})) + \cos(\sin^{-1}(\sqrt{x})) - 1 \), we will analyze it step by step. ### Step 1: Simplify the Function We start with the function: \[ g(x) = \sin(\sin^{-1}(\sqrt{x})) + \cos(\sin^{-1}(\sqrt{x})) - 1 \] Using the property of the inverse sine function, we know that: \[ \sin(\sin^{-1}(y)) = y \quad \text{for } y \in [0, 1] \] Thus, we can simplify: \[ g(x) = \sqrt{x} + \cos(\sin^{-1}(\sqrt{x})) - 1 \] ### Step 2: Simplify the Cosine Term Next, we simplify \( \cos(\sin^{-1}(\sqrt{x})) \). We use the identity: \[ \cos(\sin^{-1}(y)) = \sqrt{1 - y^2} \] So, we have: \[ \cos(\sin^{-1}(\sqrt{x})) = \sqrt{1 - (\sqrt{x})^2} = \sqrt{1 - x} \] Now substituting this back into our function: \[ g(x) = \sqrt{x} + \sqrt{1 - x} - 1 \] ### Step 3: Check for Evenness To check if \( g(x) \) is an even function, we need to verify if \( g(-x) = g(x) \). Calculating \( g(-x) \): \[ g(-x) = \sqrt{-x} + \sqrt{1 - (-x)} - 1 \] However, \( \sqrt{-x} \) is not defined for real \( x \) when \( x > 0 \). Thus, we cannot directly compare \( g(-x) \) with \( g(x) \). ### Step 4: Check for Oddness Next, we check if \( g(-x) = -g(x) \): From the previous step, since \( g(-x) \) is not defined for \( x > 0 \), we cannot conclude that \( g(x) \) is odd. ### Step 5: Determine Periodicity To check if the function is periodic, we need to find if there exists a period \( T \) such that \( g(x + T) = g(x) \) for all \( x \). Since the function involves square roots and is defined for \( x \in [0, 1] \) (due to the square root and inverse sine), it does not exhibit periodic behavior. ### Conclusion Based on the analysis: - The function is not even because \( g(-x) \) is not defined for all \( x \). - The function is not odd for the same reason. - The function is not periodic as it does not repeat values over an interval. Thus, the correct answer is: **(4) Neither even nor odd.**

To determine the nature of the function \( g(x) = \sin(\sin^{-1}(\sqrt{x})) + \cos(\sin^{-1}(\sqrt{x})) - 1 \), we will analyze it step by step. ### Step 1: Simplify the Function We start with the function: \[ g(x) = \sin(\sin^{-1}(\sqrt{x})) + \cos(\sin^{-1}(\sqrt{x})) - 1 \] Using the property of the inverse sine function, we know that: ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|125 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos
CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Multiple Correct Answer Type
  1. Let f(x)={x^2-4x+3,x<3x-4,xgeq3 a n dg(x)={x-3,x<4x^2+2x+2,xgeq4 the...

    Text Solution

    |

  2. Let f(x)="max"(1+s in x ,1,1-cosx),x in [0,2pi],a n dg(x)=max{1,|x-1|}...

    Text Solution

    |

  3. Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1...

    Text Solution

    |

  4. Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot the...

    Text Solution

    |

  5. If f: R^+vecR^+ is a polynomial function satisfying the functional equ...

    Text Solution

    |

  6. f(x)=x^2-2a x+a(a+1),f:[a ,oo)vec[a ,oo)dot If one of the solution of ...

    Text Solution

    |

  7. Which of the following function is/are periodic? (a)f(x)={1,xi sr a ...

    Text Solution

    |

  8. Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n...

    Text Solution

    |

  9. lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is...

    Text Solution

    |

  10. f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer funct...

    Text Solution

    |

  11. [2x]-2[x]=lambda where [.] represents greatest integer function and {....

    Text Solution

    |

  12. The set of all values of x satisfying {x}=x[xx] " where " [xx] repres...

    Text Solution

    |

  13. The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)s...

    Text Solution

    |

  14. If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx ,...

    Text Solution

    |

  15. Let f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2))[f(x) is not identically zer...

    Text Solution

    |

  16. Let f: RvecR be a function defined by f(x+1)=(f(x)-5)/(f(x)-3)AAx in ...

    Text Solution

    |

  17. Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)...

    Text Solution

    |

  18. Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1+x)...

    Text Solution

    |

  19. The figure illustrates the graph of the function y=f(x) defined in [-3...

    Text Solution

    |

  20. If graph of a function f(x) which is defined in [-1, 4] is shown in th...

    Text Solution

    |