Home
Class 12
MATHS
Let f: RvecR be a function defined by f(...

Let `f: RvecR` be a function defined by `f(x+1)=(f(x)-5)/(f(x)-3)AAx in Rdot` Then which of the following statement(s) is/are ture? `f(2008)=f(2004)` `f(2006)=f(2010)` `f(2006)=f(2002)` `f(2006)=f(2018`

A

`f(2008)=f(2004)`

B

`f(2006)=f(2010)`

C

`f(2006)=f(2002)`

D

`f(2006)=f(2018)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given functional equation: \[ f(x + 1) = \frac{f(x) - 5}{f(x) - 3} \] ### Step 1: Analyze the functional equation We will first rewrite the functional equation for clarity: 1. **Equation**: \[ f(x + 1) = \frac{f(x) - 5}{f(x) - 3} \] ### Step 2: Substitute \( x \) with \( x - 1 \) Next, we will substitute \( x \) with \( x - 1 \) in the original equation: 2. **Substitution**: \[ f(x) = \frac{f(x - 1) - 5}{f(x - 1) - 3} \] ### Step 3: Establish a relationship between \( f(x) \) and \( f(x + 2) \) Now, we can derive a relationship between \( f(x) \) and \( f(x + 2) \): 3. **Using the previous equations**: \[ f(x + 2) = \frac{f(x + 1) - 5}{f(x + 1) - 3} \] Substitute \( f(x + 1) \) from Step 1: \[ f(x + 2) = \frac{\frac{f(x) - 5}{f(x) - 3} - 5}{\frac{f(x) - 5}{f(x) - 3} - 3} \] ### Step 4: Simplify the expression We can simplify the expression derived in Step 3: 4. **Simplification**: \[ f(x + 2) = \frac{(f(x) - 5) - 5(f(x) - 3)}{(f(x) - 5) - 3(f(x) - 3)} \] This leads to: \[ f(x + 2) = \frac{-4f(x) + 10}{-2f(x) + 4} \] ### Step 5: Establish periodicity Continuing this process, we can find that: 5. **Periodic Function**: By continuing to substitute and simplify, we can show that: \[ f(x + 4) = f(x) \] This indicates that \( f(x) \) is periodic with a period of 4. ### Step 6: Evaluate the given statements Now we can evaluate the statements given in the problem: 1. **Statement 1**: \( f(2008) = f(2004) \) - True, because \( 2008 - 2004 = 4 \). 2. **Statement 2**: \( f(2006) = f(2010) \) - True, because \( 2010 - 2006 = 4 \). 3. **Statement 3**: \( f(2006) = f(2002) \) - True, because \( 2006 - 2002 = 4 \). 4. **Statement 4**: \( f(2006) = f(2018) \) - True, because \( 2018 - 2006 = 12 \), which is a multiple of 4. ### Conclusion All statements are true: - \( f(2008) = f(2004) \) - \( f(2006) = f(2010) \) - \( f(2006) = f(2002) \) - \( f(2006) = f(2018) \)

To solve the problem, we start with the given functional equation: \[ f(x + 1) = \frac{f(x) - 5}{f(x) - 3} \] ### Step 1: Analyze the functional equation We will first rewrite the functional equation for clarity: ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|125 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f: R->R be a function defined by f(x+1)=(f(x)-5)/(f(x)-3)AAx in R . Then which of the following statement(s) is/are true?

Let f:R to R be a function defined b f(x)=cos(5x+2). Then,f is

If f:RtoR is a function defined by f(x)=x^(3)+5 then f^(-1)(x) is

Let f :RrarrR be a function defined by f(x) = x^3 + x^2 + 3x + sin x . Then f is

Let f :RrarrR be a function defined by f(x) = x^3 + x^2 + 3x + sin x . Then f is

Let f:[-1,1] to R_(f) be a function defined by f(x)=(x)/(x+2) . Show that f is invertible.

Let f : R → R be a function defined by f ( x ) = 2 x − 5 ∀ x ∈ R . Then Write f^(−1) .

Let f : R − { − 3, 5 } → R be a function defined as f ( x ) = (2x)/(5x+3) . Write f^(−1)

Let a function f(x) satisfies f(x)+f(2x)+f(2-x)+f(1+x)=x ,AAx in Rdot Then find the value of f(0)dot

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Multiple Correct Answer Type
  1. Let f(x)={x^2-4x+3,x<3x-4,xgeq3 a n dg(x)={x-3,x<4x^2+2x+2,xgeq4 the...

    Text Solution

    |

  2. Let f(x)="max"(1+s in x ,1,1-cosx),x in [0,2pi],a n dg(x)=max{1,|x-1|}...

    Text Solution

    |

  3. Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1...

    Text Solution

    |

  4. Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot the...

    Text Solution

    |

  5. If f: R^+vecR^+ is a polynomial function satisfying the functional equ...

    Text Solution

    |

  6. f(x)=x^2-2a x+a(a+1),f:[a ,oo)vec[a ,oo)dot If one of the solution of ...

    Text Solution

    |

  7. Which of the following function is/are periodic? (a)f(x)={1,xi sr a ...

    Text Solution

    |

  8. Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n...

    Text Solution

    |

  9. lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is...

    Text Solution

    |

  10. f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer funct...

    Text Solution

    |

  11. [2x]-2[x]=lambda where [.] represents greatest integer function and {....

    Text Solution

    |

  12. The set of all values of x satisfying {x}=x[xx] " where " [xx] repres...

    Text Solution

    |

  13. The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)s...

    Text Solution

    |

  14. If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx ,...

    Text Solution

    |

  15. Let f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2))[f(x) is not identically zer...

    Text Solution

    |

  16. Let f: RvecR be a function defined by f(x+1)=(f(x)-5)/(f(x)-3)AAx in ...

    Text Solution

    |

  17. Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)...

    Text Solution

    |

  18. Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1+x)...

    Text Solution

    |

  19. The figure illustrates the graph of the function y=f(x) defined in [-3...

    Text Solution

    |

  20. If graph of a function f(x) which is defined in [-1, 4] is shown in th...

    Text Solution

    |