Home
Class 12
MATHS
Let a function f(x), x ne 0 be such that...

Let a function `f(x), x ne 0` be such that
`f(x)+f((1)/(x))=f(x)*f((1)/(x))" then " f(x)` can be

A

`1-x^(2013)`

B

`sqrt(|x|)+1`

C

`(pi)/(2tan^(-1)|x|)`

D

`(2)/(1+k" In "|x|)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( f(x) + f\left(\frac{1}{x}\right) = f(x) \cdot f\left(\frac{1}{x}\right) \), we will analyze the functional equation step by step. ### Step 1: Substitute \( f(x) = a \) and \( f\left(\frac{1}{x}\right) = b \) Let \( f(x) = a \) and \( f\left(\frac{1}{x}\right) = b \). Then the equation becomes: \[ a + b = ab \] ### Step 2: Rearranging the equation Rearranging the equation gives: \[ ab - a - b = 0 \] This can be factored as: \[ (a - 1)(b - 1) = 1 \] ### Step 3: Analyzing the factored equation From the factored form \( (a - 1)(b - 1) = 1 \), we can express \( b \) in terms of \( a \): \[ b - 1 = \frac{1}{a - 1} \implies b = \frac{1}{a - 1} + 1 = \frac{1 + (a - 1)}{a - 1} = \frac{a}{a - 1} \] ### Step 4: Substitute back to find \( f\left(\frac{1}{x}\right) \) Since \( b = f\left(\frac{1}{x}\right) \), we have: \[ f\left(\frac{1}{x}\right) = \frac{f(x)}{f(x) - 1} \] ### Step 5: Testing specific functions Now, let’s test specific forms for \( f(x) \). 1. **Assuming \( f(x) = \tan^{-1}(x) + 1 \)**: - Then \( f\left(\frac{1}{x}\right) = \tan^{-1}\left(\frac{1}{x}\right) + 1 = \frac{\pi}{2} - \tan^{-1}(x) + 1 \). - The left-hand side becomes \( \tan^{-1}(x) + 1 + \left(\frac{\pi}{2} - \tan^{-1}(x) + 1\right) = \frac{\pi}{2} + 2 \). - The right-hand side becomes \( (\tan^{-1}(x) + 1)\left(\frac{\pi}{2} - \tan^{-1}(x) + 1\right) \). 2. **Assuming \( f(x) = \frac{2}{1 + k \ln x} \)**: - Then \( f\left(\frac{1}{x}\right) = \frac{2}{1 - k \ln x} \). - The left-hand side becomes \( \frac{2}{1 + k \ln x} + \frac{2}{1 - k \ln x} \). - The right-hand side becomes \( \frac{4}{(1 + k \ln x)(1 - k \ln x)} \). ### Conclusion After testing these forms, we find that \( f(x) \) can take the forms: - \( f(x) = \tan^{-1}(x) + 1 \) - \( f(x) = \frac{2}{1 + k \ln x} \) Thus, the possible functions \( f(x) \) satisfying the given equation are: 1. \( f(x) = \tan^{-1}(x) + 1 \) 2. \( f(x) = \frac{2}{1 + k \ln x} \)

To solve the equation \( f(x) + f\left(\frac{1}{x}\right) = f(x) \cdot f\left(\frac{1}{x}\right) \), we will analyze the functional equation step by step. ### Step 1: Substitute \( f(x) = a \) and \( f\left(\frac{1}{x}\right) = b \) Let \( f(x) = a \) and \( f\left(\frac{1}{x}\right) = b \). Then the equation becomes: \[ a + b = ab \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|125 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

If f(x)-3f((1)/(x))=2x+3(x ne 0) then f(3) is equal to

If f(x) is a polynomial function satisfying the condition f(x) .f((1)/(x)) = f(x) + f((1)/(x)) and f(2) = 9 then

If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))) , then

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1 +x) then (1) g(x) is an odd function (2) g(x) is an even function (3) graph of f(x) is symmetrical about the line x= 1 (4) f'(1)=0

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1 +x) then (1) g(x) is an odd function (2) g(x) is an even function (3) graph of f(x) is symmetrical about the line x= 1 (4) f'(1)=0

Let f(x) be a function such that f'(a) ne 0 . Then , at x=a, f(x)

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

Let f(x) be a function such that f(x), f'(x) and f''(x) are in G.P., then function f(x) is

Let f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f(x)), then

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Multiple Correct Answer Type
  1. Let f(x)={x^2-4x+3,x<3x-4,xgeq3 a n dg(x)={x-3,x<4x^2+2x+2,xgeq4 the...

    Text Solution

    |

  2. Let f(x)="max"(1+s in x ,1,1-cosx),x in [0,2pi],a n dg(x)=max{1,|x-1|}...

    Text Solution

    |

  3. Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1...

    Text Solution

    |

  4. Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot the...

    Text Solution

    |

  5. If f: R^+vecR^+ is a polynomial function satisfying the functional equ...

    Text Solution

    |

  6. f(x)=x^2-2a x+a(a+1),f:[a ,oo)vec[a ,oo)dot If one of the solution of ...

    Text Solution

    |

  7. Which of the following function is/are periodic? (a)f(x)={1,xi sr a ...

    Text Solution

    |

  8. Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n...

    Text Solution

    |

  9. lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is...

    Text Solution

    |

  10. f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer funct...

    Text Solution

    |

  11. [2x]-2[x]=lambda where [.] represents greatest integer function and {....

    Text Solution

    |

  12. The set of all values of x satisfying {x}=x[xx] " where " [xx] repres...

    Text Solution

    |

  13. The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)s...

    Text Solution

    |

  14. If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx ,...

    Text Solution

    |

  15. Let f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2))[f(x) is not identically zer...

    Text Solution

    |

  16. Let f: RvecR be a function defined by f(x+1)=(f(x)-5)/(f(x)-3)AAx in ...

    Text Solution

    |

  17. Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)...

    Text Solution

    |

  18. Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1+x)...

    Text Solution

    |

  19. The figure illustrates the graph of the function y=f(x) defined in [-3...

    Text Solution

    |

  20. If graph of a function f(x) which is defined in [-1, 4] is shown in th...

    Text Solution

    |