Home
Class 12
MATHS
The number of integers in the domain of ...

The number of integers in the domain of function, satisfying `f(x)+f(x^(-1))=(x^3+1)/x ,i s_____`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of integers in the domain of the function defined by the equation: \[ f(x) + f\left(\frac{1}{x}\right) = \frac{x^3 + 1}{x} \] ### Step-by-Step Solution: 1. **Rewrite the Equation:** Start with the given equation: \[ f(x) + f\left(\frac{1}{x}\right) = \frac{x^3 + 1}{x} \] This can be simplified to: \[ f(x) + f\left(\frac{1}{x}\right) = x^2 + \frac{1}{x} \] 2. **Substitute \( x \) with \( \frac{1}{x} \):** Now, replace \( x \) with \( \frac{1}{x} \) in the original equation: \[ f\left(\frac{1}{x}\right) + f(x) = \frac{\left(\frac{1}{x}\right)^3 + 1}{\frac{1}{x}} = \frac{\frac{1}{x^3} + 1}{\frac{1}{x}} = \frac{1 + x^3}{x^3} \] This simplifies to: \[ f\left(\frac{1}{x}\right) + f(x) = \frac{1}{x^2} + x \] 3. **Set Up the Equations:** We now have two equations: - Equation 1: \( f(x) + f\left(\frac{1}{x}\right) = x^2 + \frac{1}{x} \) - Equation 2: \( f\left(\frac{1}{x}\right) + f(x) = \frac{1}{x^2} + x \) Since the left-hand sides are the same, we can equate the right-hand sides: \[ x^2 + \frac{1}{x} = \frac{1}{x^2} + x \] 4. **Rearranging the Equation:** Rearranging gives us: \[ x^2 - x + \frac{1}{x} - \frac{1}{x^2} = 0 \] This can be rewritten as: \[ x^2 - \frac{1}{x^2} + \frac{1}{x} - x = 0 \] 5. **Factoring the Equation:** Recognize that \( x^2 - \frac{1}{x^2} \) can be factored using the difference of squares: \[ (x - \frac{1}{x})(x + \frac{1}{x}) + \frac{1}{x} - x = 0 \] Let \( y = x + \frac{1}{x} \). The equation becomes: \[ (x - \frac{1}{x})(y) + \frac{1}{x} - x = 0 \] 6. **Finding Possible Values of \( x \):** The equation \( x^2 = 1 \) gives us the possible solutions: \[ x = 1 \quad \text{or} \quad x = -1 \] 7. **Determine the Domain:** The integers in the domain of \( f(x) \) that satisfy the equation are \( x = 1 \) and \( x = -1 \). ### Final Answer: Thus, the number of integers in the domain of the function is **2**.

To solve the problem, we need to find the number of integers in the domain of the function defined by the equation: \[ f(x) + f\left(\frac{1}{x}\right) = \frac{x^3 + 1}{x} \] ### Step-by-Step Solution: 1. **Rewrite the Equation:** Start with the given equation: ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(single correct Answer Type)|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Multiple Correct Answer Type)|2 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the number of integers in the domain of f (x) = (1)/(sqrt(ln cos ^(-1)x)

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

Number of integers in domain of function f(x) =log_(|x^2|)(4-|x|)+log_2{sqrt(x)} is

The domain of the function defined by f(x) = sin^(-1)sqrt(x-1) is

Find the domain of the function f(x)=sin^(-1)(2x-3)

Find the domain of the function: f(x)=(sin^(-1)x)/x

Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

Find the domain of the function f(x) = sin^-1 sqrt(x-1)

Find the domain of the function f(x)=sin^(-1)(2x-3) .

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Numerical value Type
  1. If f(x)={xcosx+(log)e((1-x)/(1+x))a; x=0; x!=0 is odd, then a,

    Text Solution

    |

  2. The number of integers in the range of the function f(x)=|4((sqrt(cos"...

    Text Solution

    |

  3. The number of integers in the domain of function, satisfying f(x)+f(x^...

    Text Solution

    |

  4. If a polynomial function f(x) satisfies f(f(f(x))=8x+21 , where pa n d...

    Text Solution

    |

  5. If f(x) is an odd function, f(1)=3,f(x+2)=f(x)+f(2), then the value of...

    Text Solution

    |

  6. Let f: R->R be a continuous onto function satisfying f(x)+f(-x)=0AAx i...

    Text Solution

    |

  7. The set of all real values of x for which the funciton f(x) = sqrt(sin...

    Text Solution

    |

  8. Suppose that f is an even, periodic function with period 2, and f(x)=x...

    Text Solution

    |

  9. If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 i...

    Text Solution

    |

  10. The function f(x)=(x+1)/(x^3+1) can be written as the sum of an even f...

    Text Solution

    |

  11. If T is the period of the function f(x)=[8x+7]+|tan2pix+cot2pix|-8x] (...

    Text Solution

    |

  12. An even polynomial function f(x) satisfies a relation f(2x)(1-f(1/(2x)...

    Text Solution

    |

  13. If f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+pi/3)a n dg(5/4)=1, then (gof)(...

    Text Solution

    |

  14. Let E={1,2,3,4,} and F={1,2}. Then the number of onto functions from E...

    Text Solution

    |

  15. The function of f is continuous and has the property f(f(x))=1-xdot Th...

    Text Solution

    |

  16. A function f from integers to integers is defined as f(n)={(n+3",",...

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. If x=4/9 satisfies the equation (log)a(x^2-x+2)>(log)a(-x^2+2x+3), the...

    Text Solution

    |

  19. If 4^x-2^(x+2)+5+||b-1|-3|-|siny|, x , y , b in R , then the possible...

    Text Solution

    |

  20. If f: N to N, and x(2) gt x(1) implies f(x(2)) gt f(x) AA x(1), x(2) i...

    Text Solution

    |