Home
Class 12
MATHS
If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then t...

If `f(x)=sqrt(4-x^2)+sqrt(x^2-1)` , then the maximum value of `(f(x))^2` is ____________

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( (f(x))^2 \) where \( f(x) = \sqrt{4 - x^2} + \sqrt{x^2 - 1} \), we will follow these steps: ### Step 1: Define the function We start with the function: \[ f(x) = \sqrt{4 - x^2} + \sqrt{x^2 - 1} \] ### Step 2: Determine the domain of \( f(x) \) The expression \( \sqrt{4 - x^2} \) is defined when \( 4 - x^2 \geq 0 \) which gives: \[ x^2 \leq 4 \implies -2 \leq x \leq 2 \] The expression \( \sqrt{x^2 - 1} \) is defined when \( x^2 - 1 \geq 0 \) which gives: \[ x^2 \geq 1 \implies x \leq -1 \text{ or } x \geq 1 \] Combining these two conditions, the domain of \( f(x) \) is: \[ [-2, -1] \cup [1, 2] \] ### Step 3: Analyze \( f(x) \) on the intervals We will analyze \( f(x) \) on the intervals \( [-2, -1] \) and \( [1, 2] \). #### Interval 1: \( x \in [-2, -1] \) - At \( x = -2 \): \[ f(-2) = \sqrt{4 - (-2)^2} + \sqrt{(-2)^2 - 1} = \sqrt{4 - 4} + \sqrt{4 - 1} = 0 + \sqrt{3} = \sqrt{3} \] - At \( x = -1 \): \[ f(-1) = \sqrt{4 - (-1)^2} + \sqrt{(-1)^2 - 1} = \sqrt{4 - 1} + \sqrt{1 - 1} = \sqrt{3} + 0 = \sqrt{3} \] #### Interval 2: \( x \in [1, 2] \) - At \( x = 1 \): \[ f(1) = \sqrt{4 - 1^2} + \sqrt{1^2 - 1} = \sqrt{4 - 1} + \sqrt{1 - 1} = \sqrt{3} + 0 = \sqrt{3} \] - At \( x = 2 \): \[ f(2) = \sqrt{4 - 2^2} + \sqrt{2^2 - 1} = \sqrt{4 - 4} + \sqrt{4 - 1} = 0 + \sqrt{3} = \sqrt{3} \] ### Step 4: Find maximum value of \( f(x) \) From the calculations above, we see that \( f(x) \) takes the value \( \sqrt{3} \) at all endpoints of the intervals. Therefore, the maximum value of \( f(x) \) is: \[ \max f(x) = \sqrt{3} \] ### Step 5: Calculate \( (f(x))^2 \) Now, we find the maximum value of \( (f(x))^2 \): \[ (f(x))^2 = (\sqrt{3})^2 = 3 \] ### Final Answer Thus, the maximum value of \( (f(x))^2 \) is: \[ \boxed{3} \]

To find the maximum value of \( (f(x))^2 \) where \( f(x) = \sqrt{4 - x^2} + \sqrt{x^2 - 1} \), we will follow these steps: ### Step 1: Define the function We start with the function: \[ f(x) = \sqrt{4 - x^2} + \sqrt{x^2 - 1} \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(single correct Answer Type)|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Multiple Correct Answer Type)|2 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

let f(x)=sqrt(1+x^2) then

If f(x) =sqrt(4-x^(2)) +1/(sqrt(abs(sinx)-sinx)) , then the-domain of f(x) is

f(x)=sqrt(1-sqrt(1-x^2) then at x=0 ,value of f(x) is

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

If f(x)="sin ln" (sqrt(4-x^(2)))/(1-x), then

If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x) , then the domain of fog (x) is

f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

If f(x)=(x-4)/(2sqrt(x)) , then find f'(1)

If f(x)=sqrt(x+2sqrt(2x-4))+sqrt(x-2sqrt(2x-4)) then the value of 10 f'(102^(+)) , is

x^2+(f(x)-2)x-sqrt(3).f(x)+2sqrt(3)-3=0 , then the value of f(sqrt(3))

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Numerical value Type
  1. The set of all real values of x for which the funciton f(x) = sqrt(sin...

    Text Solution

    |

  2. Suppose that f is an even, periodic function with period 2, and f(x)=x...

    Text Solution

    |

  3. If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 i...

    Text Solution

    |

  4. The function f(x)=(x+1)/(x^3+1) can be written as the sum of an even f...

    Text Solution

    |

  5. If T is the period of the function f(x)=[8x+7]+|tan2pix+cot2pix|-8x] (...

    Text Solution

    |

  6. An even polynomial function f(x) satisfies a relation f(2x)(1-f(1/(2x)...

    Text Solution

    |

  7. If f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+pi/3)a n dg(5/4)=1, then (gof)(...

    Text Solution

    |

  8. Let E={1,2,3,4,} and F={1,2}. Then the number of onto functions from E...

    Text Solution

    |

  9. The function of f is continuous and has the property f(f(x))=1-xdot Th...

    Text Solution

    |

  10. A function f from integers to integers is defined as f(n)={(n+3",",...

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. If x=4/9 satisfies the equation (log)a(x^2-x+2)>(log)a(-x^2+2x+3), the...

    Text Solution

    |

  13. If 4^x-2^(x+2)+5+||b-1|-3|-|siny|, x , y , b in R , then the possible...

    Text Solution

    |

  14. If f: N to N, and x(2) gt x(1) implies f(x(2)) gt f(x) AA x(1), x(2) i...

    Text Solution

    |

  15. The number of integral values of a for which f(x)="log"((log)(1/3)((lo...

    Text Solution

    |

  16. Let f(x)=sin^(23)x-cos^(22)xa n dg(x)=1+1/2tan^(-1)|x| . Then the numb...

    Text Solution

    |

  17. Suppose that f(x) is a function of the form f(x)=(ax^(8)+bx^(6)+cx^...

    Text Solution

    |

  18. If f:(2,-oo) -> [8, oo) is a surjective function defined by f(x) = x^...

    Text Solution

    |

  19. Period of the function f(x)=sin((x)/(2))cos [(x)/(2)]-cos((x)/(2))s...

    Text Solution

    |

  20. If the interval x satisfying the equation |x| +|-x|=(log(3)(x-2))/(|...

    Text Solution

    |