Home
Class 12
MATHS
If f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+p...

If `f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+pi/3)a n dg(5/4)=1,` then `(gof)(x)` is ____________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( (g \circ f)(x) \) given that \( f(x) = \sin^2 x + \sin^2\left(x + \frac{\pi}{3}\right) + \cos x \cos\left(x + \frac{\pi}{3}\right) \) and \( g\left(\frac{5}{4}\right) = 1 \). ### Step-by-Step Solution: 1. **Calculate \( f(x) \)**: \[ f(x) = \sin^2 x + \sin^2\left(x + \frac{\pi}{3}\right) + \cos x \cos\left(x + \frac{\pi}{3}\right) \] 2. **Use the angle addition formulas**: - We know that: \[ \sin\left(x + \frac{\pi}{3}\right) = \sin x \cos\frac{\pi}{3} + \cos x \sin\frac{\pi}{3} = \sin x \cdot \frac{1}{2} + \cos x \cdot \frac{\sqrt{3}}{2} \] - Therefore, \[ \sin^2\left(x + \frac{\pi}{3}\right) = \left(\frac{1}{2} \sin x + \frac{\sqrt{3}}{2} \cos x\right)^2 \] - Expanding this gives: \[ = \frac{1}{4} \sin^2 x + \frac{\sqrt{3}}{2} \sin x \cos x + \frac{3}{4} \cos^2 x \] 3. **Calculate \( \cos\left(x + \frac{\pi}{3}\right) \)**: - Using the cosine addition formula: \[ \cos\left(x + \frac{\pi}{3}\right) = \cos x \cos\frac{\pi}{3} - \sin x \sin\frac{\pi}{3} = \cos x \cdot \frac{1}{2} - \sin x \cdot \frac{\sqrt{3}}{2} \] - Thus, \[ \cos x \cos\left(x + \frac{\pi}{3}\right) = \cos x \left(\frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x\right) = \frac{1}{2} \cos^2 x - \frac{\sqrt{3}}{2} \sin x \cos x \] 4. **Combine all parts**: - Now substituting back into \( f(x) \): \[ f(x) = \sin^2 x + \left(\frac{1}{4} \sin^2 x + \frac{\sqrt{3}}{2} \sin x \cos x + \frac{3}{4} \cos^2 x\right) + \left(\frac{1}{2} \cos^2 x - \frac{\sqrt{3}}{2} \sin x \cos x\right) \] - Combine like terms: \[ = \sin^2 x + \frac{1}{4} \sin^2 x + \frac{3}{4} \cos^2 x + \frac{1}{2} \cos^2 x + \left(\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}\right) \sin x \cos x \] - This simplifies to: \[ = \frac{5}{4} \sin^2 x + \frac{5}{4} \cos^2 x = \frac{5}{4}(\sin^2 x + \cos^2 x) = \frac{5}{4} \] 5. **Find \( g(f(x)) \)**: - Since we have found that \( f(x) = \frac{5}{4} \), we can substitute this into \( g \): \[ g(f(x)) = g\left(\frac{5}{4}\right) \] - Given that \( g\left(\frac{5}{4}\right) = 1 \), we conclude: \[ (g \circ f)(x) = 1 \] ### Final Answer: \[ (g \circ f)(x) = 1 \]

To solve the problem, we need to find \( (g \circ f)(x) \) given that \( f(x) = \sin^2 x + \sin^2\left(x + \frac{\pi}{3}\right) + \cos x \cos\left(x + \frac{\pi}{3}\right) \) and \( g\left(\frac{5}{4}\right) = 1 \). ### Step-by-Step Solution: 1. **Calculate \( f(x) \)**: \[ f(x) = \sin^2 x + \sin^2\left(x + \frac{\pi}{3}\right) + \cos x \cos\left(x + \frac{\pi}{3}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(single correct Answer Type)|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Multiple Correct Answer Type)|2 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+pi/3) and g(5/4)=1, then (gof)(x) is ____________

If f(x)=sin^(2)x+sin^(2)(x+(2pi)/(3))+sin^(2)(x+(4pi)/(3)) then :

If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4))=3 , then (d)/(dx)(gof(x)) =

The period of the function f(x)=c^((sin^2x) +sin^2 (x+pi/3)+cosxcos(x+pi/3)) is (where c is constant)

solve :sin^-1x+sin^-1 2x=pi/3

solve :sin^-1x+sin^-1 2x=pi/3

Evaluate: int(sin2x)/(sin(x-pi/3)sin(x+pi/3))\ dx

The period of the function f(x)=c^((sin^2x+sin^(2(x+pi/3))+cosxcos(x+pi/3)) is (where c is constant) 1 (b) pi/2 (c) pi (d) cannot be determined

If f: R->R be given by f(x)=sin^2x+sin^2(x+pi//3)+cosx\ cos(x+pi//3) for all x in R , and g: R->R be such that g(5//4)=1 , then prove that gof: R->R is a constant function.

The period of sin(pi/4)x+cos(pi/2)x+cos(pi/3)x is

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Numerical value Type
  1. Suppose that f is an even, periodic function with period 2, and f(x)=x...

    Text Solution

    |

  2. If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 i...

    Text Solution

    |

  3. The function f(x)=(x+1)/(x^3+1) can be written as the sum of an even f...

    Text Solution

    |

  4. If T is the period of the function f(x)=[8x+7]+|tan2pix+cot2pix|-8x] (...

    Text Solution

    |

  5. An even polynomial function f(x) satisfies a relation f(2x)(1-f(1/(2x)...

    Text Solution

    |

  6. If f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+pi/3)a n dg(5/4)=1, then (gof)(...

    Text Solution

    |

  7. Let E={1,2,3,4,} and F={1,2}. Then the number of onto functions from E...

    Text Solution

    |

  8. The function of f is continuous and has the property f(f(x))=1-xdot Th...

    Text Solution

    |

  9. A function f from integers to integers is defined as f(n)={(n+3",",...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. If x=4/9 satisfies the equation (log)a(x^2-x+2)>(log)a(-x^2+2x+3), the...

    Text Solution

    |

  12. If 4^x-2^(x+2)+5+||b-1|-3|-|siny|, x , y , b in R , then the possible...

    Text Solution

    |

  13. If f: N to N, and x(2) gt x(1) implies f(x(2)) gt f(x) AA x(1), x(2) i...

    Text Solution

    |

  14. The number of integral values of a for which f(x)="log"((log)(1/3)((lo...

    Text Solution

    |

  15. Let f(x)=sin^(23)x-cos^(22)xa n dg(x)=1+1/2tan^(-1)|x| . Then the numb...

    Text Solution

    |

  16. Suppose that f(x) is a function of the form f(x)=(ax^(8)+bx^(6)+cx^...

    Text Solution

    |

  17. If f:(2,-oo) -> [8, oo) is a surjective function defined by f(x) = x^...

    Text Solution

    |

  18. Period of the function f(x)=sin((x)/(2))cos [(x)/(2)]-cos((x)/(2))s...

    Text Solution

    |

  19. If the interval x satisfying the equation |x| +|-x|=(log(3)(x-2))/(|...

    Text Solution

    |

  20. Let f(x) be a polynomial of degree 5 such that f(|x|)=0 has 8 real dis...

    Text Solution

    |