Home
Class 12
MATHS
Let f(x)=sin^(23)x-cos^(22)xa n dg(x)=1+...

Let `f(x)=sin^(23)x-cos^(22)xa n dg(x)=1+1/2tan^(-1)|x|` . Then the number of values of `x` in the interval `[-10pi,8pi]` satisfying the equation `f(x)=sgn(g(x))` is __________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of values of \( x \) in the interval \([-10\pi, 8\pi]\) that satisfy the equation \( f(x) = \text{sgn}(g(x)) \), where \( f(x) = \sin^{23}(x) - \cos^{22}(x) \) and \( g(x) = 1 + \frac{1}{2} \tan^{-1} |x| \). ### Step-by-Step Solution: 1. **Understanding the Signum Function:** The signum function, \( \text{sgn}(x) \), is defined as: - \( \text{sgn}(x) = -1 \) if \( x < 0 \) - \( \text{sgn}(x) = 0 \) if \( x = 0 \) - \( \text{sgn}(x) = 1 \) if \( x > 0 \) 2. **Analyzing \( g(x) \):** The function \( g(x) = 1 + \frac{1}{2} \tan^{-1} |x| \): - Since \( \tan^{-1} |x| \) is always non-negative, \( g(x) \) is always greater than or equal to 1. - Therefore, \( \text{sgn}(g(x)) = 1 \) for all \( x \). 3. **Setting Up the Equation:** Since \( \text{sgn}(g(x)) = 1 \), the equation simplifies to: \[ f(x) = 1 \] This means we need to solve: \[ \sin^{23}(x) - \cos^{22}(x) = 1 \] 4. **Rearranging the Equation:** Rearranging gives us: \[ \sin^{23}(x) = 1 + \cos^{22}(x) \] Since \( \sin^{23}(x) \) can only equal 1 when \( \sin(x) = 1 \) (which occurs at \( x = \frac{\pi}{2} + 2n\pi \)), we need to check if this satisfies the equation. 5. **Finding the Values of \( x \):** For \( \sin(x) = 1 \): \[ x = \frac{\pi}{2} + 2n\pi \quad (n \in \mathbb{Z}) \] 6. **Determining the Range of \( n \):** We need to find \( n \) such that: \[ -10\pi \leq \frac{\pi}{2} + 2n\pi \leq 8\pi \] Dividing through by \( \pi \): \[ -10 \leq \frac{1}{2} + 2n \leq 8 \] Rearranging gives: \[ -10 - \frac{1}{2} \leq 2n \leq 8 - \frac{1}{2} \] Simplifying: \[ -\frac{21}{2} \leq 2n \leq \frac{15}{2} \] Dividing by 2: \[ -\frac{21}{4} \leq n \leq \frac{15}{4} \] 7. **Finding Integer Values of \( n \):** The integer values of \( n \) in the range \( -5.25 \leq n \leq 3.75 \) are: \[ n = -5, -4, -3, -2, -1, 0, 1, 2, 3 \] This gives us a total of 9 integer values. ### Conclusion: The number of values of \( x \) in the interval \([-10\pi, 8\pi]\) satisfying the equation \( f(x) = \text{sgn}(g(x)) \) is **9**.

To solve the problem, we need to find the number of values of \( x \) in the interval \([-10\pi, 8\pi]\) that satisfy the equation \( f(x) = \text{sgn}(g(x)) \), where \( f(x) = \sin^{23}(x) - \cos^{22}(x) \) and \( g(x) = 1 + \frac{1}{2} \tan^{-1} |x| \). ### Step-by-Step Solution: 1. **Understanding the Signum Function:** The signum function, \( \text{sgn}(x) \), is defined as: - \( \text{sgn}(x) = -1 \) if \( x < 0 \) - \( \text{sgn}(x) = 0 \) if \( x = 0 \) ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(single correct Answer Type)|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Multiple Correct Answer Type)|2 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos
CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Numerical value Type
  1. Suppose that f is an even, periodic function with period 2, and f(x)=x...

    Text Solution

    |

  2. If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 i...

    Text Solution

    |

  3. The function f(x)=(x+1)/(x^3+1) can be written as the sum of an even f...

    Text Solution

    |

  4. If T is the period of the function f(x)=[8x+7]+|tan2pix+cot2pix|-8x] (...

    Text Solution

    |

  5. An even polynomial function f(x) satisfies a relation f(2x)(1-f(1/(2x)...

    Text Solution

    |

  6. If f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+pi/3)a n dg(5/4)=1, then (gof)(...

    Text Solution

    |

  7. Let E={1,2,3,4,} and F={1,2}. Then the number of onto functions from E...

    Text Solution

    |

  8. The function of f is continuous and has the property f(f(x))=1-xdot Th...

    Text Solution

    |

  9. A function f from integers to integers is defined as f(n)={(n+3",",...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. If x=4/9 satisfies the equation (log)a(x^2-x+2)>(log)a(-x^2+2x+3), the...

    Text Solution

    |

  12. If 4^x-2^(x+2)+5+||b-1|-3|-|siny|, x , y , b in R , then the possible...

    Text Solution

    |

  13. If f: N to N, and x(2) gt x(1) implies f(x(2)) gt f(x) AA x(1), x(2) i...

    Text Solution

    |

  14. The number of integral values of a for which f(x)="log"((log)(1/3)((lo...

    Text Solution

    |

  15. Let f(x)=sin^(23)x-cos^(22)xa n dg(x)=1+1/2tan^(-1)|x| . Then the numb...

    Text Solution

    |

  16. Suppose that f(x) is a function of the form f(x)=(ax^(8)+bx^(6)+cx^...

    Text Solution

    |

  17. If f:(2,-oo) -> [8, oo) is a surjective function defined by f(x) = x^...

    Text Solution

    |

  18. Period of the function f(x)=sin((x)/(2))cos [(x)/(2)]-cos((x)/(2))s...

    Text Solution

    |

  19. If the interval x satisfying the equation |x| +|-x|=(log(3)(x-2))/(|...

    Text Solution

    |

  20. Let f(x) be a polynomial of degree 5 such that f(|x|)=0 has 8 real dis...

    Text Solution

    |