Home
Class 12
MATHS
if ABC is a triangle and tan(A/2), tan(B...

if ABC is a triangle and `tan(A/2), tan(B/2), tan(C/2)` are in H.P. Then find the minimum value of `cot(A/2)*cot(C/2)`

Text Solution

AI Generated Solution

To solve the problem, we need to find the minimum value of \( \cot\left(\frac{A}{2}\right) \cdot \cot\left(\frac{C}{2}\right) \) given that \( \tan\left(\frac{A}{2}\right), \tan\left(\frac{B}{2}\right), \tan\left(\frac{C}{2}\right) \) are in Harmonic Progression (H.P.). ### Step-by-Step Solution: 1. **Understanding the Condition**: Since \( \tan\left(\frac{A}{2}\right), \tan\left(\frac{B}{2}\right), \tan\left(\frac{C}{2}\right) \) are in H.P., we can use the property that if three numbers \( x, y, z \) are in H.P., then \( \frac{1}{x}, \frac{1}{y}, \frac{1}{z} \) are in A.P. Therefore, we have: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.2|7 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

if ABC is a triangle and tan(A/2), tan(B/2), tan(C/2) are in H.P. Then find the minimum value of cot(B/2)

. In a DeltaABC, If tan (A/2) , tan(B/2), tan (C/2) , are in H.P.,then a,b,c are in

In a triangle ABC if b+c=3a then find the value of cot(B/2)cot(C/2)

In a Delta ABC tan ""A/2, tan ""B/2, tan ""C/2 are in H.P., then the vlaue iof cot ""A/2 cot ""C/2 is :

In any Delta ABC , cot(A/2),cot(B/2),cot(C/2) are in A.P. , then

Find the minimum value of 9tan^2theta+4cot^2theta

If A + B + C=pi , then find the minimum value of cot^2A + cot^2B + cot^2C

In a triangle ABC if tan.(A)/(2)tan.(B)/(2)=(1)/(3) and ab = 4, then the value of c can be

In Delta ABC if tan(A/2) tan(B/2) + tan(B/2) tan(C/2) = 2/3 then a+c

If in a triangle ABC, b + c = 3a, then tan (B/2)tan(C/2) is equal to