Home
Class 12
MATHS
Prove that sum(k=1)^(n-1)(n-k)cos(2kpi)...

Prove that `sum_(k=1)^(n-1)(n-k)cos(2kpi)/n=-n/2,w h e r engeq3i sa nin t ege r`

Text Solution

Verified by Experts

`S=sum_(k=1)^(n-1)(n-k)cos""(2kpi)/(n)`
`=(n-1)cos""(2pi)/(n)+(n-2)cos 2 (2pi)/(n)+......+1cos(n-1)(2pi)/(n)`
We know that `cos theta=cos(2pi-theta)`. Replacing each angle `theta` by `2pi-theta` in Eq. i, we get
`S=(n-1)cos(n-1)(2pi)/(n)+(n-2)cos(n-2)(2pi)/(n)+.........+1 cos ""(2pi)/(n)` [using Eq. i]
Adding terms having the same angle and taking n common, we have
`2S=n[cos((2pi)/(n))+cos((4pi)/(n))+cos((6pi)/(n))+......+cos(n-1)(2pi)/(n)]`
`=n[(sin(n-1)((pi)/(n)))/(sin((pi)/(n)))cos((2pi)/(n))+(n-1)(2pi)/(n))/(2)`
`=n[(sin(pi-(pi)/(n)))/(sin((pi)/(n)))cospi]=-n`
`therefore S=-n//2`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.2|7 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(k=1)^(n-1)(n-k)cos(2kpi)/n=-n/2 , where ngeq3 is an integer

Evaluate sum_(r=1)^(n-1) cos^(2) ((rpi)/(n)) .

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)^n C_r=1/n .

Prove that sum_(r=1)^(k) (-3)^(r-1) ""^(3n)C_(2r-1) = 0 , where k = 3n//2 and n is an even integer.

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Prove that sum_(r=0)^(n) ""^(n)C_(r).(n-r)cos((2rpi)/(n)) = - n.2^(n-1).cos^(n)'(pi)/(n) .

If n be integer gt1, then prove that sum_(r=1)^(n-1) cos (2rpi)/n=-1

Prove that sum_(r=0)^n r(n-r)(^nC_ r)^2=n^2(^(2n-2)C_n)dot

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Prove that sum_(k=1)^(n-1) ""^(n)C_(k)[cos k x. cos (n+k)x+sin(n-k)x.sin(2n-k)x]=(2^(n)-2)cos nx .