Home
Class 12
MATHS
If xcostheta=ycos(theta+(2pi)/3)=z cos(t...

If `xcostheta=ycos(theta+(2pi)/3)=z cos(theta+(4pi)/3)` , prove that `x y+y z+z x=0.`

Text Solution

AI Generated Solution

To prove that \( xy + yz + zx = 0 \) given the equations \( x \cos \theta = y \cos \left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right) \), we can follow these steps: ### Step 1: Set a common variable Let us denote: \[ k = x \cos \theta = y \cos \left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.4|26 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.5|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If x\ costheta=y cos(theta+(2pi)/3)=z cos(theta+(4pi)/3) , then write the value of 1/x+1/y+1/zdot

If x/(costheta)=y/(cos(theta-(2pi)/3))=z/(cos(theta+(2pi)/3)) then x+y+z is (a)1 (b) 0 (c) -1 (d) none of these

Prove that: cos^3theta+cos^3 (theta- (2pi)/n)+cos^3 (theta- (4pi)/n)+… to n terms =0

If x=sin(theta+(7pi)/(12))+sin(theta+pi/(12))+sin(theta+(3pi)/(12))dot Y=cos(theta+(7pi)/(12))+cos(theta+pi/(12))+cos(theta+(3pi)/(12))dot then prove that X/Y-Y/X=2tan2theta

If xsin^3theta+ycos^3theta=sinthetacosthetaa n dxsintheta=ycostheta, prove that x^2+y^2=1

The system of equations x - y cos theta + z cos 2theta =0 -xcostheta+y-zcostheta=0 x cos 2theta-ycostheta + z=0 has non-trivial solution for theta equals

If 0lt=thetalt=pi and the system of equations x=(sin theta)y+(cos theta)z y=z+(cos theta) x z=(sin theta) x+y has a non-trivial solution then (8theta)/(pi) is equal to

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

If cos(y-z)+cos(z-x)+cos(x-y)=-3/2, prove that cos x + cos y + cos z = 0 = sin x + siny + sinz.

If pi < theta < 2pi and z=1+cos theta + i sin theta , then write the value of |z|