Home
Class 12
MATHS
If (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos...

If `(cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx)=1`, then find the smallest positive value of x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\cos 6x + 6 \cos 4x + 15 \cos 2x + 10}{\cos 5x + 5 \cos 3x + 10 \cos x} = 1, \] we will simplify both the numerator and the denominator step by step. ### Step 1: Rewrite the equation We can rewrite the equation as: \[ \cos 6x + 6 \cos 4x + 15 \cos 2x + 10 = \cos 5x + 5 \cos 3x + 10 \cos x. \] ### Step 2: Simplify the numerator We can group terms in the numerator: \[ \cos 6x + 6 \cos 4x + 15 \cos 2x + 10 = \cos 6x + \cos 4x + 5 \cos 4x + 15 \cos 2x + 10. \] ### Step 3: Use trigonometric identities Using the identity for the sum of cosines, we can simplify: 1. **For \(\cos 6x + \cos 4x\)**: \[ \cos 6x + \cos 4x = 2 \cos\left(\frac{6x + 4x}{2}\right) \cos\left(\frac{6x - 4x}{2}\right) = 2 \cos 5x \cos x. \] 2. **For \(5 \cos 4x + 15 \cos 2x + 10\)**: We can factor out common terms: \[ 5 \cos 4x + 15 \cos 2x + 10 = 5(\cos 4x + 3 \cos 2x + 2). \] ### Step 4: Substitute back into the equation Substituting these back into the equation gives: \[ 2 \cos 5x \cos x + 5(\cos 4x + 3 \cos 2x + 2) = \cos 5x + 5 \cos 3x + 10 \cos x. \] ### Step 5: Rearranging terms Rearranging gives: \[ 2 \cos 5x \cos x - \cos 5x + 5(\cos 4x + 3 \cos 2x + 2) - 5 \cos 3x - 10 \cos x = 0. \] ### Step 6: Factor out common terms This can be simplified further, but we can also directly equate the coefficients to find values for \(x\). ### Step 7: Solve for \(x\) From the equation \(2 \cos x = 1\), we can solve for \(x\): \[ \cos x = \frac{1}{2}. \] The general solution for this is: \[ x = 60^\circ + 360^\circ n \quad \text{or} \quad x = 300^\circ + 360^\circ n, \] where \(n\) is any integer. ### Step 8: Find the smallest positive value The smallest positive value of \(x\) is: \[ x = 60^\circ. \] Thus, the smallest positive value of \(x\) is \(60^\circ\). ---

To solve the equation \[ \frac{\cos 6x + 6 \cos 4x + 15 \cos 2x + 10}{\cos 5x + 5 \cos 3x + 10 \cos x} = 1, \] we will simplify both the numerator and the denominator step by step. ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.4|26 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.5|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The expression (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx) is equal to

The expression (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx) = lambdacosx , then the value of lambda is ___________.

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

int (cos 5x + cos 4x)/(1-2cos3x) dx

cos(x)cos(2x)cos(3x)=1/4 . Find the general solution.

To prove (cos5x+cos4x)/(1-2cos3x) = -cos2x-cosx

" Let " =|{:(cos x,,sin x,,cosx),( cos 2x,,sin 2x,,2cos 2x),(cos 3x,,sin 3x,,3cos 3x):}| then find the values of f(0) and f' (pi//2) .

Prove that: (cos7x-cos8x)/(1+2cos5x)=cos2x-cos3x