Home
Class 12
MATHS
The average value of sin2^@,sin4^@, sin6...

The average value of `sin2^@,sin4^@, sin6^@.........sin180^@` is `(i) 1/90 cos1^0 (ii) 1/90 sin1^0 (iii) 1/90cot1^0` (iv) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the average value of \( \sin 2^\circ, \sin 4^\circ, \sin 6^\circ, \ldots, \sin 180^\circ \), we will follow these steps: ### Step 1: Identify the terms in the series The series consists of the sine of even angles from \( 2^\circ \) to \( 180^\circ \). The terms can be represented as: \[ \sin 2^\circ, \sin 4^\circ, \sin 6^\circ, \ldots, \sin 180^\circ \] This series has a total of \( 90 \) terms because the angles increase by \( 2^\circ \) from \( 2^\circ \) to \( 180^\circ \). ### Step 2: Calculate the sum of the terms We can pair the terms in the series: \[ \sin 2^\circ + \sin 178^\circ, \sin 4^\circ + \sin 176^\circ, \ldots, \sin 88^\circ + \sin 92^\circ \] Using the identity \( \sin(180^\circ - x) = \sin x \), we find that: \[ \sin 178^\circ = \sin 2^\circ, \sin 176^\circ = \sin 4^\circ, \ldots, \sin 92^\circ = \sin 88^\circ \] Thus, each pair sums to \( 2\sin x \) for \( x = 2^\circ, 4^\circ, \ldots, 88^\circ \). ### Step 3: Count the pairs There are \( 44 \) pairs (from \( \sin 2^\circ \) to \( \sin 88^\circ \)) plus the middle term \( \sin 90^\circ \): \[ \sin 90^\circ = 1 \] So the total sum becomes: \[ \text{Sum} = 2(\sin 2^\circ + \sin 4^\circ + \sin 6^\circ + \ldots + \sin 88^\circ) + 1 \] ### Step 4: Use a sine summation formula The sum \( \sin 2^\circ + \sin 4^\circ + \ldots + \sin 88^\circ \) can be computed using the formula: \[ \sum_{k=1}^{n} \sin a + (k-1)d = \frac{\sin\left(\frac{nd}{2}\right) \sin\left(a + \frac{(n-1)d}{2}\right)}{\sin\left(\frac{d}{2}\right)} \] For our case, \( a = 2^\circ \), \( d = 2^\circ \), and \( n = 44 \). ### Step 5: Calculate the average The average value \( m \) is given by: \[ m = \frac{\text{Sum}}{90} \] Substituting the calculated sum into this formula gives us the average. ### Step 6: Final simplification After simplification, we find: \[ m = \frac{1}{90} \cot 1^\circ \] Thus, the average value of \( \sin 2^\circ, \sin 4^\circ, \ldots, \sin 180^\circ \) is: \[ \boxed{\frac{1}{90} \cot 1^\circ} \]

To find the average value of \( \sin 2^\circ, \sin 4^\circ, \sin 6^\circ, \ldots, \sin 180^\circ \), we will follow these steps: ### Step 1: Identify the terms in the series The series consists of the sine of even angles from \( 2^\circ \) to \( 180^\circ \). The terms can be represented as: \[ \sin 2^\circ, \sin 4^\circ, \sin 6^\circ, \ldots, \sin 180^\circ \] This series has a total of \( 90 \) terms because the angles increase by \( 2^\circ \) from \( 2^\circ \) to \( 180^\circ \). ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.8|9 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.6|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that 2 sin 2^(@)+4sin 4^(@)+6sin 6^(@)+........+180sin 180^(@)=90 cot 1^(@) .

Prove that 2sin2^0+4sin4^0+6"sin"6^0+.......+180sin180^0=90cot1^0dot

sin0^ 0sin1 ^0..................... sin90^ 0 =

sin 163^0cos 347^0+sin 73^0sin 167^0= a. 1//2 b. 1 c. 0 d. none of these

Evaluate: sin(2\ sin^(-1)0. 6)

The value of expression (2sin^2 91^0-1)(2sin^2 92^0-1)...(2sin^2 180^0-1) is equal to 0 (b) 1 (c) 2^(90) (d) 2^(90)-90

The value of (sin 1^(@) +sin 3^(@) + sin 5^(@) +sin 7^(@))/(cos 1^(@)*cos 2^(@)sin 4^(@)) is __________

Prove that sin6^0sin42^0sin66^0sin78^0=1/(16)

The value of 3"sin"pi/(6)."sec"pi/(3)-4"sin"(5pi)/(6)."cot"pi/(4) is (i) -1 (ii) 0 (iii) 1 (iv) 2

If cosA+cos^2A=1 , then sin^2A+sin^4A= (a) -1 (b) 0 (c) 1 (d) None of these