Home
Class 12
MATHS
underset(r=0)overset(n)(sum)sin^(2)""(rp...

`underset(r=0)overset(n)(sum)sin^(2)""(rpi)/(n)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation: \[ \sum_{r=0}^{n} \sin^2\left(\frac{r \pi}{n}\right) \] ### Step 1: Use the identity for \(\sin^2\) We can use the trigonometric identity: \[ \sin^2 \theta = \frac{1 - \cos(2\theta)}{2} \] Applying this identity to our summation, we have: \[ \sin^2\left(\frac{r \pi}{n}\right) = \frac{1 - \cos\left(\frac{2r \pi}{n}\right)}{2} \] ### Step 2: Substitute into the summation Substituting this into the summation gives: \[ \sum_{r=0}^{n} \sin^2\left(\frac{r \pi}{n}\right) = \sum_{r=0}^{n} \frac{1 - \cos\left(\frac{2r \pi}{n}\right)}{2} \] This can be split into two separate summations: \[ = \frac{1}{2} \sum_{r=0}^{n} 1 - \frac{1}{2} \sum_{r=0}^{n} \cos\left(\frac{2r \pi}{n}\right) \] ### Step 3: Evaluate the first summation The first summation is straightforward: \[ \sum_{r=0}^{n} 1 = n + 1 \] Thus, we have: \[ \frac{1}{2} (n + 1) \] ### Step 4: Evaluate the second summation Now, we need to evaluate: \[ \sum_{r=0}^{n} \cos\left(\frac{2r \pi}{n}\right) \] This is a geometric series. The sum of cosines can be evaluated as follows: \[ \sum_{r=0}^{n} \cos\left(\frac{2r \pi}{n}\right) = \frac{\sin\left(\frac{(n + 1) \pi}{n}\right)}{\sin\left(\frac{\pi}{n}\right)} \] Since \(\sin\left(\frac{(n + 1) \pi}{n}\right) = \sin(\pi) = 0\), we find that: \[ \sum_{r=0}^{n} \cos\left(\frac{2r \pi}{n}\right) = 0 \] ### Step 5: Combine results Putting this back into our expression, we have: \[ \sum_{r=0}^{n} \sin^2\left(\frac{r \pi}{n}\right) = \frac{1}{2}(n + 1) - \frac{1}{2}(0) = \frac{n + 1}{2} \] ### Final Answer Thus, the final result is: \[ \sum_{r=0}^{n} \sin^2\left(\frac{r \pi}{n}\right) = \frac{n + 1}{2} \] ---

To solve the problem, we need to evaluate the summation: \[ \sum_{r=0}^{n} \sin^2\left(\frac{r \pi}{n}\right) \] ### Step 1: Use the identity for \(\sin^2\) We can use the trigonometric identity: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.8|9 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.6|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-n^(2)) is equal to

If (1+a)(1+a^(2))(1+a^(4)) . . . . (1+a^(128))=underset(r=0)overset(n)suma^(r ) , then n is equal to

let underset(r=0)overset(2010)(sum)a_(r)x^(r)=(1+x+x^(2)+x^(3)+x^(4)+x^(5))^(402) and underset(r=0)overset(2010)(sum)a_(r)=a, then the value of ((underset(r=0)overset(2010)(sum)r.a_(r))/(underset(r=0)overset(2010)(sum)a_(r))) is equal to____.

If omega is a complex nth root of unity, then underset(r=1)overset(n)(ar+b)omega^(r-1) is equal to

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

The sum, underset(n-1)overset(10)(Sigma)(n(2n+1)(2n-1))/5 is equal to.........

If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a_(r)x^(r)(1-x)^(3n-2r) , then the value of a_(r) , where n in N is

Statement-1: In the expansion of (sqrt(5)+3^(1//5))^(10) , sum of integral terms is 3134. Statement-2: (x+y)^(n)=underset(r=0)overset(n)(sum).^(n)C_(r)*x^(n-r)y^(r) .

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?