Home
Class 12
MATHS
Sum the series: sqrt(1+cos alpha)+sqrt(1...

Sum the series: `sqrt(1+cos alpha)+sqrt(1+cos 2alpha)+sqrt(1+cos 3alpha)` +.......to n terms, where `0ltalphaltpi`

Text Solution

AI Generated Solution

The correct Answer is:
To sum the series \( S = \sqrt{1 + \cos \alpha} + \sqrt{1 + \cos 2\alpha} + \sqrt{1 + \cos 3\alpha} + \ldots + \sqrt{1 + \cos n\alpha} \), we can use the trigonometric identity for \( 1 + \cos x \). ### Step-by-Step Solution: 1. **Use the Trigonometric Identity**: We know that: \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] Therefore, \[ \sqrt{1 + \cos k\alpha} = \sqrt{2 \cos^2\left(\frac{k\alpha}{2}\right)} = \sqrt{2} \cos\left(\frac{k\alpha}{2}\right) \] 2. **Rewrite the Series**: Substitute the identity into the series: \[ S = \sqrt{2} \left( \cos\left(\frac{\alpha}{2}\right) + \cos\left(\frac{2\alpha}{2}\right) + \cos\left(\frac{3\alpha}{2}\right) + \ldots + \cos\left(\frac{n\alpha}{2}\right) \right) \] This simplifies to: \[ S = \sqrt{2} \left( \cos\left(\frac{\alpha}{2}\right) + \cos\left(\alpha\right) + \cos\left(\frac{3\alpha}{2}\right) + \ldots + \cos\left(\frac{n\alpha}{2}\right) \right) \] 3. **Sum the Cosine Terms**: The sum of cosines can be expressed using the formula for the sum of cosines: \[ \sum_{k=0}^{n-1} \cos(a + kd) = \frac{\sin\left(\frac{nd}{2}\right) \cos\left(a + \frac{(n-1)d}{2}\right)}{\sin\left(\frac{d}{2}\right)} \] Here, let \( a = \frac{\alpha}{2} \) and \( d = \frac{\alpha}{2} \): \[ S = \sqrt{2} \cdot \frac{\sin\left(\frac{n\alpha}{4}\right) \cos\left(\frac{\alpha}{2} + \frac{(n-1)\alpha}{4}\right)}{\sin\left(\frac{\alpha}{4}\right)} \] 4. **Final Expression**: Thus, the final expression for the sum \( S \) becomes: \[ S = \sqrt{2} \cdot \frac{\sin\left(\frac{n\alpha}{4}\right) \cos\left(\frac{(n+1)\alpha}{4}\right)}{\sin\left(\frac{\alpha}{4}\right)} \] ### Final Answer: The sum of the series is: \[ S = \sqrt{2} \cdot \frac{\sin\left(\frac{n\alpha}{4}\right) \cos\left(\frac{(n+1)\alpha}{4}\right)}{\sin\left(\frac{\alpha}{4}\right)} \]

To sum the series \( S = \sqrt{1 + \cos \alpha} + \sqrt{1 + \cos 2\alpha} + \sqrt{1 + \cos 3\alpha} + \ldots + \sqrt{1 + \cos n\alpha} \), we can use the trigonometric identity for \( 1 + \cos x \). ### Step-by-Step Solution: 1. **Use the Trigonometric Identity**: We know that: \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.8|9 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.6|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Evaluate cos alpha cos 2 alpha cos 3 alpha..........cos 999alpha , where alpha=(2pi)/(1999)

.Express cos 6 alpha in terms of cos 3 alpha .

Express cos 6 alpha in terms of cos 3 alpha .

Sum the series cosalpha+^nC_1 cos(alpha+beta)+^nC_2 cos (alpha+2beta)+…+cos(alpha+nbeta)

The sides of the triangle are sin alpha , cos alpha and sqrt(1+sinalphacosalpha) for some 0 lt alpha lt (pi)/2 . Then the greatest angle of the triangle is

Let (sqrt(2)sin alpha)/sqrt(1+cos 2alpha)=1/7 and sqrt((1-cos2 beta)/2)=1/sqrt(10) where alpha,beta in (0,pi/2) . Then tan(alpha+2beta) is equal to

cos alpha cos(60^(@) - alpha ) cos (60^(@) + alpha ) = 1/4 cos 3 alpha.

Find the sum of the series cosalpha+x cos(alpha+beta)+ x^2/(2!)cos(alpha+2beta)+…to oo

If sqrt2(sin alpha)/(sqrt(1+cos2 alpha))=1/7 and sqrt((1-cos2beta)/2)=1/(sqrt(10)) alpha, beta in (0, pi/2) then tan (alpha + 2 beta) is equal to _________

The maximum value of (cos alpha_1). (cos alpha_2)...........(cos alpha_n) , under the restrictions 0 <=alpha_1,alpha_2..........,alpha_n<=pi/2 and (cot alpha_1) (cot alpha_2) ......... (cot a_n)=1 is