Home
Class 12
MATHS
The value of (cos^4 1^@+cos^4 2^@+....+c...

The value of `(cos^4 1^@+cos^4 2^@+....+cos^4 179^@)-(sin^4 1^@+sin^4 2^@+.....+sin^4 179^@)` equals

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ S = (\cos^4 1^\circ + \cos^4 2^\circ + \ldots + \cos^4 179^\circ) - (\sin^4 1^\circ + \sin^4 2^\circ + \ldots + \sin^4 179^\circ) \] ### Step 1: Rewrite the Expression We can rewrite \( S \) as: \[ S = \sum_{k=1}^{179} \cos^4 k^\circ - \sum_{k=1}^{179} \sin^4 k^\circ \] ### Step 2: Combine Terms We can combine the sums: \[ S = \sum_{k=1}^{179} (\cos^4 k^\circ - \sin^4 k^\circ) \] ### Step 3: Use the Identity Using the identity \( a^4 - b^4 = (a^2 + b^2)(a^2 - b^2) \), we can express \( \cos^4 k^\circ - \sin^4 k^\circ \) as: \[ \cos^4 k^\circ - \sin^4 k^\circ = (\cos^2 k^\circ + \sin^2 k^\circ)(\cos^2 k^\circ - \sin^2 k^\circ) \] Since \( \cos^2 k^\circ + \sin^2 k^\circ = 1 \), we have: \[ \cos^4 k^\circ - \sin^4 k^\circ = \cos^2 k^\circ - \sin^2 k^\circ \] ### Step 4: Substitute Back Now substitute this back into the expression for \( S \): \[ S = \sum_{k=1}^{179} (\cos^2 k^\circ - \sin^2 k^\circ) \] ### Step 5: Use the Cosine Double Angle Identity Using the identity \( \cos^2 k^\circ - \sin^2 k^\circ = \cos(2k^\circ) \): \[ S = \sum_{k=1}^{179} \cos(2k^\circ) \] ### Step 6: Evaluate the Sum The sum \( \sum_{k=1}^{n} \cos(2k^\circ) \) can be evaluated using the formula for the sum of cosines: \[ \sum_{k=0}^{n-1} \cos(a + kd) = \frac{\sin\left(\frac{nd}{2}\right) \cos\left(a + \frac{(n-1)d}{2}\right)}{\sin\left(\frac{d}{2}\right)} \] Here, \( a = 2^\circ \), \( d = 2^\circ \), and \( n = 179 \): \[ S = \frac{\sin\left(179 \cdot 2^\circ / 2\right) \cos\left(2^\circ + \frac{(179-1) \cdot 2^\circ}{2}\right)}{\sin(1^\circ)} \] ### Step 7: Simplify Calculating \( S \): \[ S = \frac{\sin(179^\circ) \cos(180^\circ)}{\sin(1^\circ)} \] Since \( \sin(179^\circ) = \sin(180^\circ - 1^\circ) = \sin(1^\circ) \) and \( \cos(180^\circ) = -1 \): \[ S = \frac{\sin(1^\circ)(-1)}{\sin(1^\circ)} = -1 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{-1} \]

To solve the problem, we need to find the value of the expression: \[ S = (\cos^4 1^\circ + \cos^4 2^\circ + \ldots + \cos^4 179^\circ) - (\sin^4 1^\circ + \sin^4 2^\circ + \ldots + \sin^4 179^\circ) \] ### Step 1: Rewrite the Expression ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.8|9 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.6|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

cos1^@ . cos2^@ . cos3^@.........cos179^@ is equal to :

The value of (sin 1^(@) +sin 3^(@) + sin 5^(@) +sin 7^(@))/(cos 1^(@)*cos 2^(@)sin 4^(@)) is __________

If (cos^4 A)/(cos^2 B) + (sin^4 A)/(sin^2 B) =1 , Prove that: sin^4 A+sin^4 B=2 sin^2 A sin^2 B

The value of 3(sin1-cos1)^(4)+6(sin1+cos1)^(2)+4(sin^(6)1+cos^(6)1) is equal to

cos^6A-sin^6A=cos2A(1-1/4sin^2 2A)

Prove that : cos^(4) A - sin^(4) A = 2 cos^(2) A - 1

Prove that cos^(4)A-sin^(4)A=cos^(2)A-sin^(2)A .

The value of 3(sin^4t+cos^4t-1)/(sin^6t+cos^6t-1) is equal to __________

The value of 3(sin^4t+cos^4t-1)/(sin^6t+cos^6t-1) is equal to __________

Prove that : (i) sin 60^(@) = 2 sin 30^(@) cos 30^(@) (ii) 4(sin^(4) 30^(@) + cos^(4) 60^(@)) - 3(cos^(2)45 - sin^(2)90^(@)) = 2