Home
Class 12
MATHS
Prove that : cos^2 (beta-gamma) + cos^2 ...

Prove that : `cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta)`.

Text Solution

Verified by Experts

Let `A=beta-gamma,B=gamma-a`, and `C-pi=alpha-beta`
`rArr A+B+C=pi`
`rArr cos^(2)(beta-gamma)+cos^(2)(gamma-alpha)+cos^(2)(alpha-beta)`
`=cos^(2)A+cos^(2)B+cos^(2)C`
`=(3+(cos2A_cos 2B+cos2C))/(2)`
`=1-2cos A cos B cos C`
`=1+2 cos (beta-alpha)cos(gamma-alpha)cos(alpha-beta)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.7|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

cos alphasin(beta-gamma)+cosbetasin(gamma-alpha)+cos gammasin(alpha-beta)=

If alpha,beta,gamma are the angles of a triangle and system of equations cos(alpha-beta)x+cos(beta-gamma)y+cos(gamma-alpha)z=0 cos(alpha+beta)x+cos(beta+gamma)y+cos(gamma+alpha)z=0 sin(alpha+beta)x+sin(beta+gamma)y+sin(gamma+alpha)z=0 has non-trivial solutions, then triangle is necessarily a. equilateral b. isosceles c. right angled "" d. acute angled

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

Let A and B denote the statements A : cos alpha + cos beta + cos gamma =0 B : sin alpha + siin beta + sin gamma = 0 If cos(beta - gamma) + cos (gamma -alpha) + cos (alpha -beta) = - (3)/(2) , then

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

Prove that: cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2) .

If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma , then which of the following is/are true:- (a) cos(alpha-beta)+cos(beta-gamma)+cos(gamma-delta)=-3/2 (b) cos(alpha-beta)+cos(beta-gamma)+cos(gamma-delta)=-1/2 (c) sumcos2alpha+2cos(alpha+beta)+2cos(beta+gamma)+2cos(gamma+alpha)=0 (d) sumsin2alpha+2sin(alpha+beta)+2sin(beta+gamma)+2sin(gamma+alpha)=0

Using properties of determinants. Prove that |(alpha,alpha^2,beta+gamma),(beta,beta^2,gamma+alpha),(gamma,gamma^2,alpha+beta)|=(beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)

Consider the vectors hat i+cos(beta-alpha) hat j+cos(gamma-alpha) hat k ,cos(alpha-beta) hat i+ hat j+"cos"(gamma-beta) hat k and cos(alpha-gamma) hat i+cos(beta-gamma) hat k+a hat k where alpha,beta , and gamma are different angles. If these vectors are coplanar, show that a is independent of alpha,beta and gamma