Home
Class 12
MATHS
If A+B+C=pi/2, show that : cotA+cotB+cot...

If `A+B+C=pi/2`, show that : `cotA+cotB+cotC=cotA cotB cotC`

Text Solution

AI Generated Solution

To prove that if \( A + B + C = \frac{\pi}{2} \), then \( \cot A + \cot B + \cot C = \cot A \cot B \cot C \), we can follow these steps: ### Step 1: Express \( A + B \) in terms of \( C \) Since \( A + B + C = \frac{\pi}{2} \), we can express \( A + B \) as: \[ A + B = \frac{\pi}{2} - C \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.7|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that: cotB cotC + cotC cotA + cotA cotB=1 .

If A+B+C=pi , prove that : (cotB+cotC) (cotC+cotA) (cotA+cotB)=cosecA cosecB cosecC

In DeltaABC , prove that: cotA+cotB+cotC = cotAcotBcotC+"cosec"A"cosec"B"cosec"C

Prove that: cot2A + tanA= cotA - cot 2A

If A+B+C=pi , prove that cotA+cotB+cotC-cos e cAdotcos e cBdotcos e cC=cotAdotcotBdotcotCdot

If A+B+C=pi , prove that cotA+cotB+cotC-cos e cAdotcos e cBdotcos e cC=cotAdotcotBdotcotCdot

If A+B+C=pi , prove that : (tanA+tanB+tanC) (cotA+cotB+cotC)=1+secA secB secC .

In a Delta ABC, GA,GB,GC makes angles alpha, beta, gamma with each other where G is the centroid to the Delta ABC then show that, cotA + cotB + cotC + cot alpha + cot beta +cotgamma =0.

If A+B+C=pi , prove that : (cotA+cotB)/(tanA+tanB) + (cotB+cotC)/(tanB+tanC) + (cotC+cotA)/(tanC+tanA) =1

i) If A+B=pi/4 prove that: (cotA-1)(cotB-1)=2