Home
Class 12
MATHS
In a triangle ABC, cos 3A+cos 3B+cos3C=1...

In a triangle ABC, `cos 3A+cos 3B+cos3C=1` and `angleA+angleBltangleC`, then find possible measure of `angleC`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the possible measure of angle \( C \) in triangle \( ABC \) given that \( \cos 3A + \cos 3B + \cos 3C = 1 \) and \( A + B < C \). ### Step-by-Step Solution: 1. **Understanding the Triangle's Angles**: In any triangle, the sum of the angles is \( 180^\circ \): \[ A + B + C = 180^\circ \] 2. **Expressing \( C \)**: From the equation above, we can express \( C \) in terms of \( A \) and \( B \): \[ C = 180^\circ - (A + B) \] 3. **Substituting \( C \) into the Cosine Equation**: We know that \( \cos 3C = \cos(3(180^\circ - (A + B))) \). Using the cosine identity \( \cos(180^\circ - x) = -\cos x \), we have: \[ \cos 3C = \cos(540^\circ - 3A - 3B) = -\cos(3A + 3B) \] 4. **Rewriting the Given Equation**: Substitute \( \cos 3C \) into the original equation: \[ \cos 3A + \cos 3B - \cos(3A + 3B) = 1 \] 5. **Using the Cosine Addition Formula**: We can use the cosine addition formula: \[ \cos X + \cos Y = 2 \cos\left(\frac{X + Y}{2}\right) \cos\left(\frac{X - Y}{2}\right) \] Applying this to \( \cos 3A + \cos 3B \): \[ \cos 3A + \cos 3B = 2 \cos\left(\frac{3A + 3B}{2}\right) \cos\left(\frac{3A - 3B}{2}\right) \] 6. **Substituting Back**: Substitute this back into the equation: \[ 2 \cos\left(\frac{3A + 3B}{2}\right) \cos\left(\frac{3A - 3B}{2}\right) - \cos(3A + 3B) = 1 \] 7. **Setting Up the Equation**: Let \( x = 3A + 3B \): \[ 2 \cos\left(\frac{x}{2}\right) \cos\left(\frac{3A - 3B}{2}\right) - \cos x = 1 \] 8. **Using the Identity**: We can use the identity \( \cos x = 1 - 2 \sin^2\left(\frac{x}{2}\right) \) to rewrite the equation. However, we can also analyze the conditions given. 9. **Finding the Angles**: Since \( A + B < C \), we have: \[ A + B < 180^\circ - (A + B) \implies 2(A + B) < 180^\circ \implies A + B < 90^\circ \] 10. **Calculating \( C \)**: Since \( A + B < 90^\circ \), we can find \( C \): \[ C = 180^\circ - (A + B) > 180^\circ - 90^\circ = 90^\circ \] 11. **Final Measure of \( C \)**: Given that the maximum value of \( C \) can be \( 120^\circ \) (as derived from the cosine equation), we conclude: \[ C = 120^\circ \] ### Conclusion: The possible measure of angle \( C \) is \( 120^\circ \).

To solve the problem, we need to find the possible measure of angle \( C \) in triangle \( ABC \) given that \( \cos 3A + \cos 3B + \cos 3C = 1 \) and \( A + B < C \). ### Step-by-Step Solution: 1. **Understanding the Triangle's Angles**: In any triangle, the sum of the angles is \( 180^\circ \): \[ A + B + C = 180^\circ ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.7|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, cos A+cos B+cos C=

In a triangle ABC, a (b cos C - c cos B) =

In a triangle ABC, cos 3A + cos 3B + cos 3C = 1 , then find any one angle.

In a triangle ABC, sin A- cos B = Cos C , then angle B is

In a Delta ABC , cos (A + B) + cos C =

In a triangle ABC if sin A cos B = 1/4 and 3 tan A = tan B , then the triangle is

In a triangle ABC cos^(2)A/2+cos^(2)B/2+cos^(2)C/2=

In a DeltaABC, angleA=2 angleB=3 angleC, find each of the triangle.

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to

A triangle ABC is such that 3angleA=4angleB=6angleC . Find the three angles.