Home
Class 12
MATHS
Let a^(2)+b^(2)=alpha^(2)+beta^(2)=2. Th...

Let `a^(2)+b^(2)=alpha^(2)+beta^(2)=2`. Then show that the maximum value of `S=(1-a)(1-b)+(1-alpha)(1-beta)` is 8.

Text Solution

AI Generated Solution

To solve the problem, we need to find the maximum value of \( S = (1 - a)(1 - b) + (1 - \alpha)(1 - \beta) \) given the conditions \( a^2 + b^2 = 2 \) and \( \alpha^2 + \beta^2 = 2 \). ### Step-by-Step Solution 1. **Substitution**: We can express \( a \), \( b \), \( \alpha \), and \( \beta \) in terms of trigonometric functions. Let: \[ a = \sqrt{2} \cos \theta, \quad b = \sqrt{2} \sin \theta, \quad \alpha = \sqrt{2} \cos \phi, \quad \beta = \sqrt{2} \sin \phi ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Single Correct Answer Type)|100 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.8|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If alpha + beta = 90^0 , show that the maximum value of cos alpha.cos beta is 1/2 .

If alpha and beta are zeroes of 8x^(2)-6x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

If alpha and beta are zeroes of 5x^(2)-7x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha, beta are the roots of the quadratic equation cx^2- 2bx + 4a = 0 then find the quadratic equation whose roots are: (i) alpha/2, beta/2 , (ii) alpha^(2), beta^(2) , (iii) alpha + 1, beta+1 , (iv) (1+alpha)/(1-alpha) (1+beta)/(1-beta) , (v) alpha/beta, beta/alpha

If sinalpha=1/2 and cosbeta=1/2 , then the value of (alpha+beta) is

If alpha, betaepsilon(0, pi/2) and if sin^4alpha+4cos^4beta+2=4sqrt2 sinalphacosbeta then the value of cos(alpha+beta)-cos(alpha-beta) is (A) sqrt2 (B) 1/sqrt2 (C) -1/sqrt2 (D) -sqrt2

If alpha and beta are complex numbers then the maximum value of (alpha barbeta+baralphabeta)/(|alpha beta|)= (A) 1 (B) 2 (C) gt2 (D) lt1

If sin(alpha+beta)=1 and sin(alpha-beta)=1/2 , where 0lt=alpha, betalt= pi/2 , then find the values of tan(alpha+2beta) and tan(2alpha+beta) .

If alpha, beta are the roots of the equation ax^2 + bx +c=0 then the value of (1+alpha+alpha^2)(1+beta+beta^2) is