Home
Class 12
MATHS
If (x^(2))/(144)-(y^(2))/(25)=1. Find th...

If `(x^(2))/(144)-(y^(2))/(25)=1`. Find the range of `(144)/(x)+(25)/(y)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of \(\frac{144}{x} + \frac{25}{y}\) given the equation \(\frac{x^2}{144} - \frac{y^2}{25} = 1\), we can follow these steps: ### Step 1: Rewrite the given equation The equation can be rewritten in a more recognizable form: \[ \frac{x^2}{12^2} - \frac{y^2}{5^2} = 1 \] This represents a hyperbola. ### Step 2: Parameterize \(x\) and \(y\) To express \(x\) and \(y\) in terms of a parameter, we can use the following substitutions: \[ x = 12 \sec \theta \quad \text{and} \quad y = 5 \tan \theta \] This substitution is valid because it satisfies the hyperbola equation. ### Step 3: Substitute \(x\) and \(y\) into the expression Now we substitute \(x\) and \(y\) into the expression \(\frac{144}{x} + \frac{25}{y}\): \[ \frac{144}{x} = \frac{144}{12 \sec \theta} = 12 \cos \theta \] \[ \frac{25}{y} = \frac{25}{5 \tan \theta} = \frac{5}{\tan \theta} = 5 \cot \theta \] Thus, we have: \[ \frac{144}{x} + \frac{25}{y} = 12 \cos \theta + 5 \cot \theta \] ### Step 4: Express \(\cot \theta\) in terms of \(\sin \theta\) and \(\cos \theta\) Recall that \(\cot \theta = \frac{\cos \theta}{\sin \theta}\). Therefore, we can rewrite the expression: \[ 12 \cos \theta + 5 \frac{\cos \theta}{\sin \theta} = \cos \theta \left(12 + \frac{5}{\sin \theta}\right) \] ### Step 5: Find the range of the expression To find the range of \(12 \cos \theta + 5 \cot \theta\), we can use the Cauchy-Schwarz inequality or the method of finding extrema. The expression can be maximized and minimized using the following: \[ R = \sqrt{12^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \] Thus, the range of \(12 \cos \theta + 5 \sin \theta\) is: \[ [-13, 13] \] ### Conclusion Therefore, the range of \(\frac{144}{x} + \frac{25}{y}\) is: \[ [-13, 13] \] ---

To find the range of \(\frac{144}{x} + \frac{25}{y}\) given the equation \(\frac{x^2}{144} - \frac{y^2}{25} = 1\), we can follow these steps: ### Step 1: Rewrite the given equation The equation can be rewritten in a more recognizable form: \[ \frac{x^2}{12^2} - \frac{y^2}{5^2} = 1 \] This represents a hyperbola. ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Single Correct Answer Type)|100 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.8|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The ellipse (x^(2))/(25)+(y^(2))/(16)=1 and the hyperbola (x^(2))/(25)-(y^(2))/(16) =1 have in common

The foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbla (x^2)/(144)-(y^2)/(81)=(1)/(25) coincide. Then, the value of b^(2) is

If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola (x^2)/(144)-(y^2)/(81)=1/(25) coincide, then find the value of b^2

If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola (x^2)/(144)-(y^2)/(81)=1/(25) coincide, then find the value

If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola (x^2)/(144)-(y^2)/(81)=1/(25) coincide write the value of b^2dot

If x^2+y^2=x^2y^2 then find the range of (5x+12 y+7x y)/(x y) .

If x^2+y^2=x^2y^2 then find the range of (5x+12 y+7x y)/(x y) .

Find the domain of f(x) = sqrt(x^(2) - 25x + 144)

If 9x^2+25 y^2=181 and x y=-6, find the value of 3x+5y

Find the products: (4x-5y)(16 x^2+20 x y+25 y^2)