Home
Class 12
MATHS
The maximum value of y=1/(sin^6x+cos^6x)...

The maximum value of `y=1/(sin^6x+cos^6x)` is ______

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( y = \frac{1}{\sin^6 x + \cos^6 x} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ y = \frac{1}{\sin^6 x + \cos^6 x} \] We can use the identity for \( a^3 + b^3 \): \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Let \( a = \sin^2 x \) and \( b = \cos^2 x \). Then, \[ \sin^6 x + \cos^6 x = (\sin^2 x)^3 + (\cos^2 x)^3 = (\sin^2 x + \cos^2 x)((\sin^2 x)^2 - \sin^2 x \cos^2 x + (\cos^2 x)^2) \] ### Step 2: Simplify using the Pythagorean identity Since \( \sin^2 x + \cos^2 x = 1 \), we have: \[ \sin^6 x + \cos^6 x = 1 \cdot ((\sin^2 x)^2 - \sin^2 x \cos^2 x + (\cos^2 x)^2) \] Now, we need to simplify \( (\sin^2 x)^2 + (\cos^2 x)^2 \): \[ (\sin^2 x)^2 + (\cos^2 x)^2 = \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x = 1 - 2\sin^2 x \cos^2 x \] Thus, \[ \sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x \] ### Step 3: Substitute back into the expression for \( y \) Now we can rewrite \( y \): \[ y = \frac{1}{1 - 3\sin^2 x \cos^2 x} \] ### Step 4: Use the double angle identity Using the double angle identity, \( \sin 2x = 2\sin x \cos x \), we have: \[ \sin^2 x \cos^2 x = \frac{1}{4} \sin^2 2x \] Substituting this into our expression for \( y \): \[ y = \frac{1}{1 - \frac{3}{4} \sin^2 2x} = \frac{4}{4 - 3\sin^2 2x} \] ### Step 5: Find the maximum value of \( y \) To maximize \( y \), we need to minimize the denominator \( 4 - 3\sin^2 2x \). The minimum value of \( \sin^2 2x \) is 0, and the maximum value is 1. Thus, the minimum value of the denominator occurs when \( \sin^2 2x = 1 \): \[ 4 - 3 \cdot 1 = 1 \] Therefore, the maximum value of \( y \) is: \[ y_{\text{max}} = \frac{4}{1} = 4 \] ### Final Answer The maximum value of \( y = \frac{1}{\sin^6 x + \cos^6 x} \) is \( \boxed{4} \). ---

To find the maximum value of \( y = \frac{1}{\sin^6 x + \cos^6 x} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ y = \frac{1}{\sin^6 x + \cos^6 x} \] We can use the identity for \( a^3 + b^3 \): ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Main|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Advanced|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The maximum value of 6 sin x cos x is

The maximum value of sin x cos x is ……..

The maximum and minimum values of 6 sin x cos x +4cos2x are respectively

The maximum and minimum values of f(x)=sin^(-1)x+cos^(-1)x+tan^(-1)x respectively is

Find the maximum value of the function f(x) =sin x + cos x .

The difference between the maximum and minimum value of the function f(x)=3sin^4x-cos^6x is :

The difference between the maximum and minimum value of the function f(x)=3sin^4x-cos^6x is :

Evaluate: int1/(cos^6x+sin^6x)dx

The maximum value of cos xsin x+sqrt(sin^(2)x+sin^(2)((pi)/(6))} is

Evaluate: int(sin^2x)/(cos^6x)\ dx

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Numerical Value Type )
  1. The absolute value of the expression tanpi/(16)+tan(5pi)/(16)+tan(9pi)...

    Text Solution

    |

  2. The greatest integer less than or equal to 1/(cos290^0)+1/(sqrt(3)sin2...

    Text Solution

    |

  3. The maximum value of y=1/(sin^6x+cos^6x) is

    Text Solution

    |

  4. The maximum value of cos^2(45^0+x)+(sinx-cosx)^2 is

    Text Solution

    |

  5. Find the exact value of coses 10^(@)+"coses"50^(@)-"cosec"70^(@)

    Text Solution

    |

  6. Number of triangles A B C if tanA=x ,tanB=x+1,a n dtanC=1-x is

    Text Solution

    |

  7. If "log"(10) sin x+"log"(10)cos x=-1 and "log"(10)(sin x+cosx)=(("log"...

    Text Solution

    |

  8. The value of (sin 1^(@) +sin 3^(@) + sin 5^(@) +sin 7^(@))/(cos 1^(@)*...

    Text Solution

    |

  9. In a triangle A B C , if A-B=120^0a n dsinA/2sinB/2sinC/2=1/(32), then...

    Text Solution

    |

  10. If (tanx)/2=(tany)/3=(tanz)/5,x+y+z=pia n dtan^2x+tan^2y+tan^2z=(38)/K...

    Text Solution

    |

  11. If sin^(3)x cos3x+cos^(3)x sin 3x=3//8, then the value of sin 4x is

    Text Solution

    |

  12. The value of "cosec".(pi)/(18)-4 sin""(7pi)/(18) is

    Text Solution

    |

  13. If tanx+tan2x+tan3x=tanxtan2xtan3x then value of |sin3x+cos3x| is

    Text Solution

    |

  14. 16(costheta-cospi/8)(costheta-cos(3pi)/8)(costheta-cos(5pi)/8)(costhet...

    Text Solution

    |

  15. If (tan(I n6)dottan(I n2)dot"tan"(I n3))/(tan(I n6)-tan(I n2)-"tan"(I ...

    Text Solution

    |

  16. If cot(theta-alpha),3cottheta,"cot"(theta+alpha) are in A.P. and theta...

    Text Solution

    |

  17. The value of (2 sinx)/(sin 3x)+(tanx)/(tan3x)

    Text Solution

    |

  18. If cot^2Acot^2B=3, then the value of (2-cos2A)(2-cos2B) is

    Text Solution

    |

  19. The value of f(x)=x^4+4x^3+2x^2-4x+7, when x=cot(11pi)/8 is

    Text Solution

    |

  20. The value of sin^2 12^0+sin^2 21^0+sin^2 39^0+sin^2 48^0-sin^2 9^0-sin...

    Text Solution

    |