Home
Class 12
MATHS
Number of triangles A B C if tanA=x ,tan...

Number of triangles `A B C` if `tanA=x ,tanB=x+1,a n dtanC=1-x` is ________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the number of triangles \( ABC \) given the conditions \( \tan A = x \), \( \tan B = x + 1 \), and \( \tan C = 1 - x \), we can use the property that in a triangle, the sum of the tangents of the angles is equal to the product of the tangents of the angles: \[ \tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C \] ### Step 1: Set up the equation Substituting the given values into the equation: \[ x + (x + 1) + (1 - x) = x \cdot (x + 1) \cdot (1 - x) \] ### Step 2: Simplify the left side Combine the terms on the left side: \[ x + x + 1 + 1 - x = 2 + x \] So, the left side simplifies to: \[ 2 + x \] ### Step 3: Simplify the right side Now, simplify the right side: \[ x \cdot (x + 1) \cdot (1 - x) = x \cdot (x + 1 - x^2 - x) = x \cdot (1 - x^2) \] This simplifies to: \[ x - x^3 \] ### Step 4: Set the equation Now we have: \[ 2 + x = x - x^3 \] ### Step 5: Rearrange the equation Rearranging gives: \[ x^3 - 2 = 0 \] ### Step 6: Solve for \( x \) This can be rewritten as: \[ x^3 = 2 \] Taking the cube root of both sides: \[ x = \sqrt[3]{2} \] ### Step 7: Find the angles Now we can find the values of \( \tan A \), \( \tan B \), and \( \tan C \): - \( \tan A = \sqrt[3]{2} \) - \( \tan B = \sqrt[3]{2} + 1 \) - \( \tan C = 1 - \sqrt[3]{2} \) ### Step 8: Determine the nature of the angles Next, we need to check if any of these angles can be obtuse. 1. If \( \tan A = \sqrt[3]{2} \), then \( A \) is acute. 2. If \( \tan B = \sqrt[3]{2} + 1 \), this is also positive, so \( B \) is acute. 3. If \( \tan C = 1 - \sqrt[3]{2} \), since \( \sqrt[3]{2} \) is approximately \( 1.26 \), \( 1 - \sqrt[3]{2} \) is negative, which means \( C \) is obtuse. ### Step 9: Conclusion Since we have one obtuse angle and two acute angles, a triangle can exist with these angle measures. However, we must check if two obtuse angles can exist, which they cannot. Thus, the number of triangles \( ABC \) that can be formed under these conditions is: \[ \text{Number of triangles} = 0 \]

To solve the problem of finding the number of triangles \( ABC \) given the conditions \( \tan A = x \), \( \tan B = x + 1 \), and \( \tan C = 1 - x \), we can use the property that in a triangle, the sum of the tangents of the angles is equal to the product of the tangents of the angles: \[ \tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C \] ### Step 1: Set up the equation ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Main|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Advanced|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Let triangle ABC be right angled at C.If tanA+tanB=2 , then-

In an acute-angled triangle ABC, tanA+tanB+tanC

If angles A and B satisfy (1+tanA)(1+tanB)=2 , then the value of A +B is

In an acute angled triangle ABC , the minimum value of tanA tanB tanC is

In triangle A B C ,tanA+tanB+tanC=6a n dtanAtanB=2, then the values of tanA ,tanB ,tanC are, respectively (a) 1,2,3 (b) 3,2//3,7//3 (c) 4,1//2 ,3//2 (d) none of these

Statement-1: In an acute angled triangle minimum value of tan alpha + tanbeta + tan gamma is 3sqrt(3) . And Statement-2: If a,b,c are three positive real numbers then (a+b+c)/3 ge sqrt(abc) into in a triangleABC , tanA+ tanB + tanC= tanA. tanB.tanC

Prove that there exist exactly two non-similar isosceles triangles A B C such that tanA+tanB+tanC=100.

In an acute-angled triangle ABC, tanA+tanB+tanC=tanAtanBtanC , then tanAtanBtanC =

Let A , B , C be the three angles such that A+B+C=pi . If tanA.tanB=2, then find the value of (cosAcosB)/(cosC)

If A and B are acute angles such that tanA=1/2 , tanB=1/3 and tan(A+B)=(tanA+tan\ B)/(1-tanAtanB) , find A+B .

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Numerical Value Type )
  1. The maximum value of cos^2(45^0+x)+(sinx-cosx)^2 is

    Text Solution

    |

  2. Find the exact value of coses 10^(@)+"coses"50^(@)-"cosec"70^(@)

    Text Solution

    |

  3. Number of triangles A B C if tanA=x ,tanB=x+1,a n dtanC=1-x is

    Text Solution

    |

  4. If "log"(10) sin x+"log"(10)cos x=-1 and "log"(10)(sin x+cosx)=(("log"...

    Text Solution

    |

  5. The value of (sin 1^(@) +sin 3^(@) + sin 5^(@) +sin 7^(@))/(cos 1^(@)*...

    Text Solution

    |

  6. In a triangle A B C , if A-B=120^0a n dsinA/2sinB/2sinC/2=1/(32), then...

    Text Solution

    |

  7. If (tanx)/2=(tany)/3=(tanz)/5,x+y+z=pia n dtan^2x+tan^2y+tan^2z=(38)/K...

    Text Solution

    |

  8. If sin^(3)x cos3x+cos^(3)x sin 3x=3//8, then the value of sin 4x is

    Text Solution

    |

  9. The value of "cosec".(pi)/(18)-4 sin""(7pi)/(18) is

    Text Solution

    |

  10. If tanx+tan2x+tan3x=tanxtan2xtan3x then value of |sin3x+cos3x| is

    Text Solution

    |

  11. 16(costheta-cospi/8)(costheta-cos(3pi)/8)(costheta-cos(5pi)/8)(costhet...

    Text Solution

    |

  12. If (tan(I n6)dottan(I n2)dot"tan"(I n3))/(tan(I n6)-tan(I n2)-"tan"(I ...

    Text Solution

    |

  13. If cot(theta-alpha),3cottheta,"cot"(theta+alpha) are in A.P. and theta...

    Text Solution

    |

  14. The value of (2 sinx)/(sin 3x)+(tanx)/(tan3x)

    Text Solution

    |

  15. If cot^2Acot^2B=3, then the value of (2-cos2A)(2-cos2B) is

    Text Solution

    |

  16. The value of f(x)=x^4+4x^3+2x^2-4x+7, when x=cot(11pi)/8 is

    Text Solution

    |

  17. The value of sin^2 12^0+sin^2 21^0+sin^2 39^0+sin^2 48^0-sin^2 9^0-sin...

    Text Solution

    |

  18. Given that f(ntheta)=(2sin2theta)/(cos2theta-cos4ntheta), and f(theta)...

    Text Solution

    |

  19. Suppose sin^(3)x sin3x=sum(m=0)^(n) C(m) cos mx is an idedntity in x ...

    Text Solution

    |

  20. If sec alpha is the average of sec(alpha - 2beta) and sec(alpha + 2bet...

    Text Solution

    |