Home
Class 12
MATHS
If (tanx)/2=(tany)/3=(tanz)/5,x+y+z=pia ...

If `(tanx)/2=(tany)/3=(tanz)/5,x+y+z=pia n dtan^2x+tan^2y+tan^2z=(38)/Kt h a nK=_________`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations and relationships. ### Step 1: Set up the equations We have: \[ \frac{\tan x}{2} = \frac{\tan y}{3} = \frac{\tan z}{5} = t \] From this, we can express \(\tan x\), \(\tan y\), and \(\tan z\) in terms of \(t\): \[ \tan x = 2t, \quad \tan y = 3t, \quad \tan z = 5t \] ### Step 2: Use the angle sum property Given that \(x + y + z = \pi\), we can use the tangent addition formula: \[ \tan(x + y + z) = \tan(\pi) = 0 \] Using the tangent addition formula for three angles, we have: \[ \tan x + \tan y + \tan z = \tan x \tan y \tan z \] Substituting the expressions for \(\tan x\), \(\tan y\), and \(\tan z\): \[ 2t + 3t + 5t = (2t)(3t)(5t) \] This simplifies to: \[ 10t = 30t^3 \] ### Step 3: Rearranging the equation Rearranging gives us: \[ 30t^3 - 10t = 0 \] Factoring out \(10t\): \[ 10t(3t^2 - 1) = 0 \] This gives us two possible cases: 1. \(t = 0\) 2. \(3t^2 - 1 = 0\) ### Step 4: Solve for \(t\) From \(3t^2 - 1 = 0\): \[ 3t^2 = 1 \implies t^2 = \frac{1}{3} \implies t = \frac{1}{\sqrt{3}} \text{ or } t = -\frac{1}{\sqrt{3}} \] Since \(t\) represents the tangent of angles, we will consider \(t = \frac{1}{\sqrt{3}}\). ### Step 5: Calculate \(\tan^2 x + \tan^2 y + \tan^2 z\) Now we can find \(\tan^2 x\), \(\tan^2 y\), and \(\tan^2 z\): \[ \tan^2 x = (2t)^2 = 4t^2 = 4 \cdot \frac{1}{3} = \frac{4}{3} \] \[ \tan^2 y = (3t)^2 = 9t^2 = 9 \cdot \frac{1}{3} = 3 \] \[ \tan^2 z = (5t)^2 = 25t^2 = 25 \cdot \frac{1}{3} = \frac{25}{3} \] Adding these together: \[ \tan^2 x + \tan^2 y + \tan^2 z = \frac{4}{3} + 3 + \frac{25}{3} \] Converting \(3\) into a fraction: \[ 3 = \frac{9}{3} \] Thus: \[ \tan^2 x + \tan^2 y + \tan^2 z = \frac{4}{3} + \frac{9}{3} + \frac{25}{3} = \frac{38}{3} \] ### Step 6: Relate to the given equation We know from the problem statement: \[ \tan^2 x + \tan^2 y + \tan^2 z = \frac{38}{k} \] Setting this equal to our result: \[ \frac{38}{3} = \frac{38}{k} \] This implies: \[ k = 3 \] ### Final Answer Thus, the value of \(k\) is: \[ \boxed{3} \]

To solve the problem, we start with the given equations and relationships. ### Step 1: Set up the equations We have: \[ \frac{\tan x}{2} = \frac{\tan y}{3} = \frac{\tan z}{5} = t \] From this, we can express \(\tan x\), \(\tan y\), and \(\tan z\) in terms of \(t\): ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Main|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Advanced|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If (tanx)/2=(tany)/3=(tanz)/5,x+y+z=pi and tan^2x+tan^2y+tan^2z is

If x+y+z=pi,,tan x tanz=2and tanytanz=18,then tan^(2)z=

If x+y+z=pi,,tan x tanz=2and tanytanz=18,then tan^(2)z=

If cosx=tany,cosy=tanz and cosz=tanx , then sin^2x=?

If x+y+z=xyz , then tan^(-1)x+tan^(-1)y+tan^(-1)z=

Prove tanx+ tany+ tanz=tan xtany tanz if x+y+z = pi

If tanx+tany=25 and cotx+coty=30 then the value of tan(x+y) is

If x,y,z are variables and 3tan x+4tany+5tanz=20, then the minimum value of tan^(2)x+tan^(2)y+tan^(2)z, is

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

In DeltaABC , If x= tan((B-C)/2) tan(A/2),y= tan((C-A)/2)tan(B/2), z=tan((A-B)/2) tan(C/2) , then x+y+z (in terms of x, y, z only) is

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Numerical Value Type )
  1. The value of (sin 1^(@) +sin 3^(@) + sin 5^(@) +sin 7^(@))/(cos 1^(@)*...

    Text Solution

    |

  2. In a triangle A B C , if A-B=120^0a n dsinA/2sinB/2sinC/2=1/(32), then...

    Text Solution

    |

  3. If (tanx)/2=(tany)/3=(tanz)/5,x+y+z=pia n dtan^2x+tan^2y+tan^2z=(38)/K...

    Text Solution

    |

  4. If sin^(3)x cos3x+cos^(3)x sin 3x=3//8, then the value of sin 4x is

    Text Solution

    |

  5. The value of "cosec".(pi)/(18)-4 sin""(7pi)/(18) is

    Text Solution

    |

  6. If tanx+tan2x+tan3x=tanxtan2xtan3x then value of |sin3x+cos3x| is

    Text Solution

    |

  7. 16(costheta-cospi/8)(costheta-cos(3pi)/8)(costheta-cos(5pi)/8)(costhet...

    Text Solution

    |

  8. If (tan(I n6)dottan(I n2)dot"tan"(I n3))/(tan(I n6)-tan(I n2)-"tan"(I ...

    Text Solution

    |

  9. If cot(theta-alpha),3cottheta,"cot"(theta+alpha) are in A.P. and theta...

    Text Solution

    |

  10. The value of (2 sinx)/(sin 3x)+(tanx)/(tan3x)

    Text Solution

    |

  11. If cot^2Acot^2B=3, then the value of (2-cos2A)(2-cos2B) is

    Text Solution

    |

  12. The value of f(x)=x^4+4x^3+2x^2-4x+7, when x=cot(11pi)/8 is

    Text Solution

    |

  13. The value of sin^2 12^0+sin^2 21^0+sin^2 39^0+sin^2 48^0-sin^2 9^0-sin...

    Text Solution

    |

  14. Given that f(ntheta)=(2sin2theta)/(cos2theta-cos4ntheta), and f(theta)...

    Text Solution

    |

  15. Suppose sin^(3)x sin3x=sum(m=0)^(n) C(m) cos mx is an idedntity in x ...

    Text Solution

    |

  16. If sec alpha is the average of sec(alpha - 2beta) and sec(alpha + 2bet...

    Text Solution

    |

  17. If A, B and C are three values lying in [0, 2pi] for which tan theta =...

    Text Solution

    |

  18. The value of [ ( sin ""(pi)/(9)) (4+ sec""(pi)/(9))]^(2) is .

    Text Solution

    |

  19. ((sin 33^(@))/( sin 11^(@) sin 49^(@) sin 71^(@)))^(2) + (( cos 33^(@)...

    Text Solution

    |

  20. If f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3...

    Text Solution

    |