Home
Class 12
MATHS
The value of "cosec".(pi)/(18)-4 sin""(...

The value of `"cosec".(pi)/(18)-4 sin""(7pi)/(18)` is ____________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \csc\left(\frac{\pi}{18}\right) - 4 \sin\left(\frac{7\pi}{18}\right) \), we will follow these steps: ### Step 1: Convert the angles to degrees We know that \( \frac{\pi}{18} \) radians is equivalent to \( 10^\circ \) (since \( \frac{\pi}{180} = 1^\circ \)). Therefore, we can rewrite the expression as: \[ \csc\left(10^\circ\right) - 4 \sin\left(\frac{7\pi}{18}\right) \] Next, we convert \( \frac{7\pi}{18} \) to degrees: \[ \frac{7\pi}{18} = 70^\circ \] Thus, the expression becomes: \[ \csc(10^\circ) - 4 \sin(70^\circ) \] ### Step 2: Rewrite cosecant in terms of sine Recall that \( \csc(x) = \frac{1}{\sin(x)} \). Therefore, we can rewrite \( \csc(10^\circ) \) as: \[ \frac{1}{\sin(10^\circ)} - 4 \sin(70^\circ) \] ### Step 3: Use the identity for sine We know that \( \sin(70^\circ) = \cos(20^\circ) \) (since \( 70^\circ + 20^\circ = 90^\circ \)). Thus, we can rewrite the expression: \[ \frac{1}{\sin(10^\circ)} - 4 \cos(20^\circ) \] ### Step 4: Find a common denominator To combine the terms, we need a common denominator, which is \( \sin(10^\circ) \): \[ \frac{1 - 4 \cos(20^\circ) \sin(10^\circ)}{\sin(10^\circ)} \] ### Step 5: Simplify the numerator Now we need to simplify the numerator \( 1 - 4 \cos(20^\circ) \sin(10^\circ) \). We can use the double angle identity for sine: \[ 2 \sin(a) \cos(b) = \sin(a + b) + \sin(a - b) \] In this case, we can express \( 4 \cos(20^\circ) \sin(10^\circ) \) as: \[ 2 \cdot 2 \cos(20^\circ) \sin(10^\circ) = 2(\sin(30^\circ) + \sin(10^\circ)) \] Thus, we rewrite the numerator: \[ 1 - 2(\sin(30^\circ) + \sin(10^\circ)) \] Since \( \sin(30^\circ) = \frac{1}{2} \): \[ 1 - 2\left(\frac{1}{2} + \sin(10^\circ)\right) = 1 - 1 - 2\sin(10^\circ) = -2\sin(10^\circ) \] ### Step 6: Final expression Now substituting back into our expression, we have: \[ \frac{-2\sin(10^\circ)}{\sin(10^\circ)} = -2 \] ### Conclusion Thus, the value of \( \csc\left(\frac{\pi}{18}\right) - 4 \sin\left(\frac{7\pi}{18}\right) \) is: \[ \boxed{-2} \]

To solve the expression \( \csc\left(\frac{\pi}{18}\right) - 4 \sin\left(\frac{7\pi}{18}\right) \), we will follow these steps: ### Step 1: Convert the angles to degrees We know that \( \frac{\pi}{18} \) radians is equivalent to \( 10^\circ \) (since \( \frac{\pi}{180} = 1^\circ \)). Therefore, we can rewrite the expression as: \[ \csc\left(10^\circ\right) - 4 \sin\left(\frac{7\pi}{18}\right) \] Next, we convert \( \frac{7\pi}{18} \) to degrees: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Main|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Advanced|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The value of cos e cpi/(18)-4sin(7pi)/(18) is

If f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3)( theta + (4pi)/(3)) then the value of f((pi)/(18)) + f((7pi)/(18)) is ___________.

The value of cosec(pi/18)-sqrt3sec(pi/18) is a

The value of sin""(15pi)/(32)sin""(7pi)/(16)sin""(3pi)/(8), is

Value of sin""(pi)/(18)*sin""(5pi)/(18)*sin""(7 pi)/(18) =

The value of sin""(2pi)/(7)+sin""(4pi)/(7)+sin""(8pi)/(7), is

The principal values of cos^(-1)(-sin(7pi)/(6)) is

The principal values of cos^(-1)(-sin((7pi)/6)) is

sin(pi/18)*sin(5pi/18)*sin(7pi/18)

sin^(-1)(sin((7pi)/4))

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Numerical Value Type )
  1. If (tanx)/2=(tany)/3=(tanz)/5,x+y+z=pia n dtan^2x+tan^2y+tan^2z=(38)/K...

    Text Solution

    |

  2. If sin^(3)x cos3x+cos^(3)x sin 3x=3//8, then the value of sin 4x is

    Text Solution

    |

  3. The value of "cosec".(pi)/(18)-4 sin""(7pi)/(18) is

    Text Solution

    |

  4. If tanx+tan2x+tan3x=tanxtan2xtan3x then value of |sin3x+cos3x| is

    Text Solution

    |

  5. 16(costheta-cospi/8)(costheta-cos(3pi)/8)(costheta-cos(5pi)/8)(costhet...

    Text Solution

    |

  6. If (tan(I n6)dottan(I n2)dot"tan"(I n3))/(tan(I n6)-tan(I n2)-"tan"(I ...

    Text Solution

    |

  7. If cot(theta-alpha),3cottheta,"cot"(theta+alpha) are in A.P. and theta...

    Text Solution

    |

  8. The value of (2 sinx)/(sin 3x)+(tanx)/(tan3x)

    Text Solution

    |

  9. If cot^2Acot^2B=3, then the value of (2-cos2A)(2-cos2B) is

    Text Solution

    |

  10. The value of f(x)=x^4+4x^3+2x^2-4x+7, when x=cot(11pi)/8 is

    Text Solution

    |

  11. The value of sin^2 12^0+sin^2 21^0+sin^2 39^0+sin^2 48^0-sin^2 9^0-sin...

    Text Solution

    |

  12. Given that f(ntheta)=(2sin2theta)/(cos2theta-cos4ntheta), and f(theta)...

    Text Solution

    |

  13. Suppose sin^(3)x sin3x=sum(m=0)^(n) C(m) cos mx is an idedntity in x ...

    Text Solution

    |

  14. If sec alpha is the average of sec(alpha - 2beta) and sec(alpha + 2bet...

    Text Solution

    |

  15. If A, B and C are three values lying in [0, 2pi] for which tan theta =...

    Text Solution

    |

  16. The value of [ ( sin ""(pi)/(9)) (4+ sec""(pi)/(9))]^(2) is .

    Text Solution

    |

  17. ((sin 33^(@))/( sin 11^(@) sin 49^(@) sin 71^(@)))^(2) + (( cos 33^(@)...

    Text Solution

    |

  18. If f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3...

    Text Solution

    |

  19. The expression (1+sin22^@sin33^@sin35^@)/(cos^2 22^@+cos^2 33^@+cos^2 ...

    Text Solution

    |

  20. If A > 0, B > 0, and A + B = pi/3 then the maximum value of tan A tan...

    Text Solution

    |