Home
Class 12
MATHS
16(costheta-cospi/8)(costheta-cos(3pi)/8...

`16(costheta-cospi/8)(costheta-cos(3pi)/8)(costheta-cos(5pi)/8)(costheta-cos(7pi)/8)=lambdacos4theta,` then the value of `lambda` is _____.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ 16(\cos \theta - \cos \frac{\pi}{8})(\cos \theta - \cos \frac{3\pi}{8})(\cos \theta - \cos \frac{5\pi}{8})(\cos \theta - \cos \frac{7\pi}{8}) = \lambda \cos 4\theta, \] we will follow these steps: ### Step 1: Rewrite the cosines We can express \(\cos \frac{5\pi}{8}\) and \(\cos \frac{7\pi}{8}\) using the cosine subtraction identity: - \(\cos \frac{5\pi}{8} = \cos(\pi - \frac{3\pi}{8}) = -\cos \frac{3\pi}{8}\) - \(\cos \frac{7\pi}{8} = \cos(\pi - \frac{\pi}{8}) = -\cos \frac{\pi}{8}\) Thus, we can rewrite the equation as: \[ 16(\cos \theta - \cos \frac{\pi}{8})(\cos \theta - \cos \frac{3\pi}{8})(\cos \theta + \cos \frac{3\pi}{8})(\cos \theta + \cos \frac{\pi}{8}). \] ### Step 2: Use the product-to-sum identities We can use the identity \( (a - b)(a + b) = a^2 - b^2 \): \[ (\cos \theta - \cos \frac{\pi}{8})(\cos \theta + \cos \frac{\pi}{8}) = \cos^2 \theta - \cos^2 \frac{\pi}{8}, \] \[ (\cos \theta - \cos \frac{3\pi}{8})(\cos \theta + \cos \frac{3\pi}{8}) = \cos^2 \theta - \cos^2 \frac{3\pi}{8}. \] ### Step 3: Combine the results Now we can substitute these results back into the equation: \[ 16 \left( \cos^2 \theta - \cos^2 \frac{\pi}{8} \right) \left( \cos^2 \theta - \cos^2 \frac{3\pi}{8} \right). \] ### Step 4: Simplify the expression Let \(x = \cos^2 \theta\). The equation becomes: \[ 16 (x - \cos^2 \frac{\pi}{8})(x - \cos^2 \frac{3\pi}{8}). \] ### Step 5: Expand the quadratic Expanding this gives: \[ 16 \left( x^2 - \left( \cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} \right)x + \cos^2 \frac{\pi}{8} \cos^2 \frac{3\pi}{8} \right). \] ### Step 6: Relate to \(\cos 4\theta\) Using the double angle formula, we know: \[ \cos 4\theta = 2\cos^2 2\theta - 1 = 2(2\cos^2 \theta - 1)^2 - 1. \] ### Step 7: Identify \(\lambda\) After simplifying, we find that the coefficient of \(\cos 4\theta\) in the expanded polynomial must match \(\lambda\). Through calculation, we find that: \[ \lambda = 2. \] ### Final Answer Thus, the value of \(\lambda\) is \[ \boxed{2}. \]

To solve the equation \[ 16(\cos \theta - \cos \frac{\pi}{8})(\cos \theta - \cos \frac{3\pi}{8})(\cos \theta - \cos \frac{5\pi}{8})(\cos \theta - \cos \frac{7\pi}{8}) = \lambda \cos 4\theta, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Main|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Advanced|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

16(costheta-cos(pi/8))(costheta-cos((3pi)/8))(costheta-cos((5pi)/8)) (costheta-cos((7pi)/8))= lambdacos4theta, then the value of lambda is _____.

Let f( theta) = ( cos theta - "cos" (pi)/(8))(cos theta - "cos" (3 pi)/(8))(cos theta - "cos" (5 pi)/(8) )(cos theta - "cos" (7pi)/(8)) then :

If cos e c^2theta(1+costheta)(1-costheta)=lambda , then find the value of lambda .

cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=

Prove that: (1+cos. (pi)/8)(1+cos. (3pi)/8)(1+cos. (5pi)/8)(1+cos. (7pi)/8)=1/8

Solve: cos3theta+costheta=0

cos^2(pi/8) +cos^2((3pi)/8) +cos^2((5pi)/8)+cos^2 ((7pi)/8)=2

Prove that: cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=3/2

If costheta+cos3theta+cos5theta+cos7theta=0 , then general value of theta is:

Solve: costheta+cos3theta+cos5theta+cos7theta=0

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Numerical Value Type )
  1. If sin^(3)x cos3x+cos^(3)x sin 3x=3//8, then the value of sin 4x is

    Text Solution

    |

  2. The value of "cosec".(pi)/(18)-4 sin""(7pi)/(18) is

    Text Solution

    |

  3. If tanx+tan2x+tan3x=tanxtan2xtan3x then value of |sin3x+cos3x| is

    Text Solution

    |

  4. 16(costheta-cospi/8)(costheta-cos(3pi)/8)(costheta-cos(5pi)/8)(costhet...

    Text Solution

    |

  5. If (tan(I n6)dottan(I n2)dot"tan"(I n3))/(tan(I n6)-tan(I n2)-"tan"(I ...

    Text Solution

    |

  6. If cot(theta-alpha),3cottheta,"cot"(theta+alpha) are in A.P. and theta...

    Text Solution

    |

  7. The value of (2 sinx)/(sin 3x)+(tanx)/(tan3x)

    Text Solution

    |

  8. If cot^2Acot^2B=3, then the value of (2-cos2A)(2-cos2B) is

    Text Solution

    |

  9. The value of f(x)=x^4+4x^3+2x^2-4x+7, when x=cot(11pi)/8 is

    Text Solution

    |

  10. The value of sin^2 12^0+sin^2 21^0+sin^2 39^0+sin^2 48^0-sin^2 9^0-sin...

    Text Solution

    |

  11. Given that f(ntheta)=(2sin2theta)/(cos2theta-cos4ntheta), and f(theta)...

    Text Solution

    |

  12. Suppose sin^(3)x sin3x=sum(m=0)^(n) C(m) cos mx is an idedntity in x ...

    Text Solution

    |

  13. If sec alpha is the average of sec(alpha - 2beta) and sec(alpha + 2bet...

    Text Solution

    |

  14. If A, B and C are three values lying in [0, 2pi] for which tan theta =...

    Text Solution

    |

  15. The value of [ ( sin ""(pi)/(9)) (4+ sec""(pi)/(9))]^(2) is .

    Text Solution

    |

  16. ((sin 33^(@))/( sin 11^(@) sin 49^(@) sin 71^(@)))^(2) + (( cos 33^(@)...

    Text Solution

    |

  17. If f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3...

    Text Solution

    |

  18. The expression (1+sin22^@sin33^@sin35^@)/(cos^2 22^@+cos^2 33^@+cos^2 ...

    Text Solution

    |

  19. If A > 0, B > 0, and A + B = pi/3 then the maximum value of tan A tan...

    Text Solution

    |

  20. If ( sin ^(3) theta)/( sin ( 2theta+ alpha )) = ( cos ^(3) theta)/( co...

    Text Solution

    |