Home
Class 12
MATHS
If cot^2Acot^2B=3, then the value of (2-...

If `cot^2Acot^2B=3,` then the value of `(2-cos2A)(2-cos2B)` is ____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: **Given:** \[ \cot^2 A \cot^2 B = 3 \] We need to find the value of: \[ (2 - \cos 2A)(2 - \cos 2B) \] ### Step 1: Express \(\cos 2A\) and \(\cos 2B\) Using the double angle formula for cosine, we can express \(\cos 2A\) and \(\cos 2B\) in terms of sine: \[ \cos 2A = 1 - 2\sin^2 A \] \[ \cos 2B = 1 - 2\sin^2 B \] ### Step 2: Substitute into the expression Now substitute these into the expression we need to evaluate: \[ (2 - \cos 2A)(2 - \cos 2B) = (2 - (1 - 2\sin^2 A))(2 - (1 - 2\sin^2 B)) \] This simplifies to: \[ (2 - 1 + 2\sin^2 A)(2 - 1 + 2\sin^2 B) = (1 + 2\sin^2 A)(1 + 2\sin^2 B) \] ### Step 3: Expand the expression Now we can expand this product: \[ (1 + 2\sin^2 A)(1 + 2\sin^2 B) = 1 + 2\sin^2 A + 2\sin^2 B + 4\sin^2 A \sin^2 B \] ### Step 4: Relate \(\sin^2 A\) and \(\sin^2 B\) to \(\cot^2 A\) and \(\cot^2 B\) From the given equation \(\cot^2 A \cot^2 B = 3\), we can express \(\cot^2 A\) and \(\cot^2 B\) in terms of sine and cosine: \[ \cot^2 A = \frac{\cos^2 A}{\sin^2 A}, \quad \cot^2 B = \frac{\cos^2 B}{\sin^2 B} \] Thus, \[ \cot^2 A \cot^2 B = \frac{\cos^2 A \cos^2 B}{\sin^2 A \sin^2 B} = 3 \] This implies: \[ \cos^2 A \cos^2 B = 3 \sin^2 A \sin^2 B \] ### Step 5: Substitute and simplify Using the identity \(\cos^2 A = 1 - \sin^2 A\) and \(\cos^2 B = 1 - \sin^2 B\), we substitute: \[ (1 - \sin^2 A)(1 - \sin^2 B) = 3 \sin^2 A \sin^2 B \] Expanding gives: \[ 1 - \sin^2 A - \sin^2 B + \sin^2 A \sin^2 B = 3 \sin^2 A \sin^2 B \] Rearranging leads to: \[ 1 - \sin^2 A - \sin^2 B - 2\sin^2 A \sin^2 B = 0 \] This can be rewritten as: \[ \sin^2 A + \sin^2 B + 2\sin^2 A \sin^2 B = 1 \] ### Step 6: Multiply by 2 Now, multiply the entire equation by 2: \[ 2\sin^2 A + 2\sin^2 B + 4\sin^2 A \sin^2 B = 2 \] ### Step 7: Substitute back into the expression Now, we can substitute this result back into our expanded expression: \[ 1 + 2\sin^2 A + 2\sin^2 B + 4\sin^2 A \sin^2 B = 1 + 2 = 3 \] ### Final Answer Thus, the value of \((2 - \cos 2A)(2 - \cos 2B)\) is: \[ \boxed{3} \]

To solve the problem, we start with the given equation: **Given:** \[ \cot^2 A \cot^2 B = 3 \] We need to find the value of: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Main|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Advanced|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The maximum value of cos^(2)A+cos^(2)B-cos^(2)C, is

If cos A=m cos B , then write the value of cot((A+B)/2)cot((A-B)/2dot)

If 2 cot A =3, find the value of " " ( 5 sin A - 2 cos A)/( 6 cos A + sin A )

If sinA+sin^2A=1, then the value of cos^2A+cos^4A is (a)2 (b) 1 (c) -2 (d) 0

In triangle ABC, /_C = (2pi)/3 then the value of cos^2 A + cos^2 B - cos A.cos B is equal

If cos e c\ A=sqrt(2) , find the value of (2sin^2A+3cot^2A)/(4tan^2A-cos^2A) .

If sec(A-2B), secA, sec(A+2B) are in A.P. then value of (Cos^(2)A)/(Cos^(2)B) is less than:

If cos e c\ A=sqrt(2) , find the value of (2sin^2A+3cot^2A)/(4(tan^2A-cos^2A)

If (25)^(2)+a^(2)+50a cos theta =(31)^(2)+b^(2)+62 b cos theta=1 and 775 + ab + (31a+25b) cos theta=0 , then the value of cosec^ (2) theta is

If cosec A = sqrt3 , find the value of: (2 sin ^(2)A + 3 cot ^(2) A)/( tan ^(2) A+ cos ^(2)A)

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Numerical Value Type )
  1. If sin^(3)x cos3x+cos^(3)x sin 3x=3//8, then the value of sin 4x is

    Text Solution

    |

  2. The value of "cosec".(pi)/(18)-4 sin""(7pi)/(18) is

    Text Solution

    |

  3. If tanx+tan2x+tan3x=tanxtan2xtan3x then value of |sin3x+cos3x| is

    Text Solution

    |

  4. 16(costheta-cospi/8)(costheta-cos(3pi)/8)(costheta-cos(5pi)/8)(costhet...

    Text Solution

    |

  5. If (tan(I n6)dottan(I n2)dot"tan"(I n3))/(tan(I n6)-tan(I n2)-"tan"(I ...

    Text Solution

    |

  6. If cot(theta-alpha),3cottheta,"cot"(theta+alpha) are in A.P. and theta...

    Text Solution

    |

  7. The value of (2 sinx)/(sin 3x)+(tanx)/(tan3x)

    Text Solution

    |

  8. If cot^2Acot^2B=3, then the value of (2-cos2A)(2-cos2B) is

    Text Solution

    |

  9. The value of f(x)=x^4+4x^3+2x^2-4x+7, when x=cot(11pi)/8 is

    Text Solution

    |

  10. The value of sin^2 12^0+sin^2 21^0+sin^2 39^0+sin^2 48^0-sin^2 9^0-sin...

    Text Solution

    |

  11. Given that f(ntheta)=(2sin2theta)/(cos2theta-cos4ntheta), and f(theta)...

    Text Solution

    |

  12. Suppose sin^(3)x sin3x=sum(m=0)^(n) C(m) cos mx is an idedntity in x ...

    Text Solution

    |

  13. If sec alpha is the average of sec(alpha - 2beta) and sec(alpha + 2bet...

    Text Solution

    |

  14. If A, B and C are three values lying in [0, 2pi] for which tan theta =...

    Text Solution

    |

  15. The value of [ ( sin ""(pi)/(9)) (4+ sec""(pi)/(9))]^(2) is .

    Text Solution

    |

  16. ((sin 33^(@))/( sin 11^(@) sin 49^(@) sin 71^(@)))^(2) + (( cos 33^(@)...

    Text Solution

    |

  17. If f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3...

    Text Solution

    |

  18. The expression (1+sin22^@sin33^@sin35^@)/(cos^2 22^@+cos^2 33^@+cos^2 ...

    Text Solution

    |

  19. If A > 0, B > 0, and A + B = pi/3 then the maximum value of tan A tan...

    Text Solution

    |

  20. If ( sin ^(3) theta)/( sin ( 2theta+ alpha )) = ( cos ^(3) theta)/( co...

    Text Solution

    |