Home
Class 12
MATHS
Suppose sin^(3)x sin3x=sum(m=0)^(n) C(m)...

Suppose `sin^(3)x sin3x=sum_(m=0)^(n) C_(m) cos mx ` is an idedntity in x , where `C_(0),….C_(n)` are constant and `C_(n)ne0` then the value of n is ___________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) in the identity: \[ \sin^3 x \sin 3x = \sum_{m=0}^{n} C_m \cos mx \] where \( C_0, C_1, \ldots, C_n \) are constants and \( C_n \neq 0 \). ### Step 1: Rewrite \( \sin 3x \) We start by using the triple angle formula for sine: \[ \sin 3x = 3 \sin x - 4 \sin^3 x \] ### Step 2: Substitute \( \sin 3x \) into the equation Now, substitute this expression into the left-hand side of the identity: \[ \sin^3 x \sin 3x = \sin^3 x (3 \sin x - 4 \sin^3 x) \] ### Step 3: Distribute \( \sin^3 x \) Distributing \( \sin^3 x \) gives us: \[ = 3 \sin^4 x - 4 \sin^6 x \] ### Step 4: Express \( \sin^4 x \) and \( \sin^6 x \) in terms of cosine We can express \( \sin^4 x \) and \( \sin^6 x \) using the identity \( \sin^2 x = 1 - \cos^2 x \): 1. For \( \sin^4 x \): \[ \sin^4 x = (\sin^2 x)^2 = (1 - \cos^2 x)^2 = 1 - 2\cos^2 x + \cos^4 x \] 2. For \( \sin^6 x \): \[ \sin^6 x = (\sin^2 x)^3 = (1 - \cos^2 x)^3 = 1 - 3\cos^2 x + 3\cos^4 x - \cos^6 x \] ### Step 5: Substitute back into the equation Substituting these into our expression: \[ 3 \sin^4 x - 4 \sin^6 x = 3(1 - 2\cos^2 x + \cos^4 x) - 4(1 - 3\cos^2 x + 3\cos^4 x - \cos^6 x) \] ### Step 6: Simplify the expression Now, simplify the expression: \[ = 3 - 6\cos^2 x + 3\cos^4 x - 4 + 12\cos^2 x - 12\cos^4 x + 4\cos^6 x \] Combining like terms: \[ = -1 + 6\cos^2 x - 9\cos^4 x + 4\cos^6 x \] ### Step 7: Identify the highest power of cosine The expression can be written as: \[ = 4\cos^6 x - 9\cos^4 x + 6\cos^2 x - 1 \] The highest power of \( \cos x \) in this expression is \( 6 \). ### Conclusion Thus, the value of \( n \) is: \[ \boxed{6} \]

To solve the problem, we need to find the value of \( n \) in the identity: \[ \sin^3 x \sin 3x = \sum_{m=0}^{n} C_m \cos mx \] where \( C_0, C_1, \ldots, C_n \) are constants and \( C_n \neq 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Main|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Advanced|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Suppose sin^3xsin3x=sum_(m=0)^n C_mcosm x is an identity in x , where C_0,C_1 ,C_n are constants and C_n!=0, the the value of n is ________

cos^3x.sin2x=sum_(m=1)^n(a_m)sin mx is an identity in x.

If 8 sin^3x sin3x=sum_(r=0)^n a cosrx is an identity, then n=

If sin^3x sin3x= sum_(n=0)^6 c_n cos^n x where c_0, c_1, c_2,...c_6 are constants. then find the value of c_4

sum_(r=0)^m .^(n+r)C_n is equal to

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

If sin x+cosec\ x=2, then write the value of sin^n x+cos e c^n xdot

(1+x)=C_(0)+C_(1)x+….+C_(n)x^(n) then the value of sumsum_(0lerltslen)C_(r)C_(s) is equal to :

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Numerical Value Type )
  1. If sin^(3)x cos3x+cos^(3)x sin 3x=3//8, then the value of sin 4x is

    Text Solution

    |

  2. The value of "cosec".(pi)/(18)-4 sin""(7pi)/(18) is

    Text Solution

    |

  3. If tanx+tan2x+tan3x=tanxtan2xtan3x then value of |sin3x+cos3x| is

    Text Solution

    |

  4. 16(costheta-cospi/8)(costheta-cos(3pi)/8)(costheta-cos(5pi)/8)(costhet...

    Text Solution

    |

  5. If (tan(I n6)dottan(I n2)dot"tan"(I n3))/(tan(I n6)-tan(I n2)-"tan"(I ...

    Text Solution

    |

  6. If cot(theta-alpha),3cottheta,"cot"(theta+alpha) are in A.P. and theta...

    Text Solution

    |

  7. The value of (2 sinx)/(sin 3x)+(tanx)/(tan3x)

    Text Solution

    |

  8. If cot^2Acot^2B=3, then the value of (2-cos2A)(2-cos2B) is

    Text Solution

    |

  9. The value of f(x)=x^4+4x^3+2x^2-4x+7, when x=cot(11pi)/8 is

    Text Solution

    |

  10. The value of sin^2 12^0+sin^2 21^0+sin^2 39^0+sin^2 48^0-sin^2 9^0-sin...

    Text Solution

    |

  11. Given that f(ntheta)=(2sin2theta)/(cos2theta-cos4ntheta), and f(theta)...

    Text Solution

    |

  12. Suppose sin^(3)x sin3x=sum(m=0)^(n) C(m) cos mx is an idedntity in x ...

    Text Solution

    |

  13. If sec alpha is the average of sec(alpha - 2beta) and sec(alpha + 2bet...

    Text Solution

    |

  14. If A, B and C are three values lying in [0, 2pi] for which tan theta =...

    Text Solution

    |

  15. The value of [ ( sin ""(pi)/(9)) (4+ sec""(pi)/(9))]^(2) is .

    Text Solution

    |

  16. ((sin 33^(@))/( sin 11^(@) sin 49^(@) sin 71^(@)))^(2) + (( cos 33^(@)...

    Text Solution

    |

  17. If f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3...

    Text Solution

    |

  18. The expression (1+sin22^@sin33^@sin35^@)/(cos^2 22^@+cos^2 33^@+cos^2 ...

    Text Solution

    |

  19. If A > 0, B > 0, and A + B = pi/3 then the maximum value of tan A tan...

    Text Solution

    |

  20. If ( sin ^(3) theta)/( sin ( 2theta+ alpha )) = ( cos ^(3) theta)/( co...

    Text Solution

    |