Home
Class 12
MATHS
((sin 33^(@))/( sin 11^(@) sin 49^(@) si...

`((sin 33^(@))/( sin 11^(@) sin 49^(@) sin 71^(@)))^(2) + (( cos 33^(@))/(cos 11^(@) cos 49^(@) cos 71^(@)))^(2) ` is equal to ______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \left(\frac{\sin 33^\circ}{\sin 11^\circ \sin 49^\circ \sin 71^\circ}\right)^2 + \left(\frac{\cos 33^\circ}{\cos 11^\circ \cos 49^\circ \cos 71^\circ}\right)^2, \] we will follow these steps: ### Step 1: Rewrite the Sine Terms We can use the identity that relates sine functions. Notice that: \[ \sin 49^\circ = \sin(60^\circ - 11^\circ) \quad \text{and} \quad \sin 71^\circ = \sin(60^\circ + 11^\circ). \] Thus, we can rewrite the sine terms as: \[ \sin 11^\circ \sin 49^\circ \sin 71^\circ = \sin 11^\circ \sin(60^\circ - 11^\circ) \sin(60^\circ + 11^\circ). \] ### Step 2: Apply the Product-to-Sum Identity Using the identity \[ \sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)], \] we can simplify: \[ \sin(60^\circ - 11^\circ) \sin(60^\circ + 11^\circ) = \frac{1}{2} [\cos(11^\circ) - \cos(71^\circ)]. \] ### Step 3: Substitute Back into the Expression Now we substitute this back into our expression: \[ \sin 11^\circ \cdot \frac{1}{2} [\cos(11^\circ) - \cos(71^\circ)]. \] ### Step 4: Use the Identity for Sine We know that: \[ \sin 33^\circ = \sin(3 \times 11^\circ) = 3 \sin 11^\circ - 4 \sin^3 11^\circ. \] ### Step 5: Simplify the Cosine Terms Similarly, we can express the cosine terms using: \[ \cos 11^\circ \cos 49^\circ \cos 71^\circ = \cos 11^\circ \cdot \frac{1}{4} \cos(3 \times 11^\circ). \] ### Step 6: Substitute and Simplify Now substituting these into our original expression, we get: \[ \left(\frac{3 \sin 11^\circ - 4 \sin^3 11^\circ}{\frac{1}{4} \sin(3 \times 11^\circ)}\right)^2 + \left(\frac{\cos(3 \times 11^\circ)}{\frac{1}{4} \cos(3 \times 11^\circ)}\right)^2. \] ### Step 7: Final Calculation After simplifying, we find that both terms will yield a common factor, leading us to: \[ \left(4\right)^2 + \left(4\right)^2 = 16 + 16 = 32. \] Thus, the final answer is \[ \boxed{32}. \]

To solve the expression \[ \left(\frac{\sin 33^\circ}{\sin 11^\circ \sin 49^\circ \sin 71^\circ}\right)^2 + \left(\frac{\cos 33^\circ}{\cos 11^\circ \cos 49^\circ \cos 71^\circ}\right)^2, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Main|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Advanced|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The value of (sin 1^(@) +sin 3^(@) + sin 5^(@) +sin 7^(@))/(cos 1^(@)*cos 2^(@)sin 4^(@)) is __________

Evaluate: ((cos 47^(@))/(sin 43^(@)))^(2)+((sin72^(2))/(cos 18^(@)))^(2)-2cos^(2)45^(@)

cos^(2)73^(@)+cos^(2)47^(@)-sin^(2)43^(@)+sin^(2)107^(@) is equal to

int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal to

(1+cos56^(@)+cos58^(@) -cos66^(@))/(cos28^(@)cos29^@sin33^(@)) =

The value of sin^(-1) (sin 12) + cos^(-1) (cos 12) is equal to

If E=cos^(2)71^(@)+cos^(2)49^(@)+cos71^(@) cos 49^(@) , then the value of 10E is equal to

Prove that ( cos 11^(@) + sin 11^(@))/( cos 11 ^(@) - sin 11 ^(@)) = tan 56 ^(@).

The value of the expression (2(sin 1^@ + sin 2^@ + sin 3^@ + .......+sin 89^@))/(2(cos 1^@ + cos 2^@ + cos 3^@ + ........+cos 44^@)+1) is equal to

The value of (sin10^(@)+sin20^(@))/(cos10^(@)+cos20^(@)) equals

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Numerical Value Type )
  1. If sin^(3)x cos3x+cos^(3)x sin 3x=3//8, then the value of sin 4x is

    Text Solution

    |

  2. The value of "cosec".(pi)/(18)-4 sin""(7pi)/(18) is

    Text Solution

    |

  3. If tanx+tan2x+tan3x=tanxtan2xtan3x then value of |sin3x+cos3x| is

    Text Solution

    |

  4. 16(costheta-cospi/8)(costheta-cos(3pi)/8)(costheta-cos(5pi)/8)(costhet...

    Text Solution

    |

  5. If (tan(I n6)dottan(I n2)dot"tan"(I n3))/(tan(I n6)-tan(I n2)-"tan"(I ...

    Text Solution

    |

  6. If cot(theta-alpha),3cottheta,"cot"(theta+alpha) are in A.P. and theta...

    Text Solution

    |

  7. The value of (2 sinx)/(sin 3x)+(tanx)/(tan3x)

    Text Solution

    |

  8. If cot^2Acot^2B=3, then the value of (2-cos2A)(2-cos2B) is

    Text Solution

    |

  9. The value of f(x)=x^4+4x^3+2x^2-4x+7, when x=cot(11pi)/8 is

    Text Solution

    |

  10. The value of sin^2 12^0+sin^2 21^0+sin^2 39^0+sin^2 48^0-sin^2 9^0-sin...

    Text Solution

    |

  11. Given that f(ntheta)=(2sin2theta)/(cos2theta-cos4ntheta), and f(theta)...

    Text Solution

    |

  12. Suppose sin^(3)x sin3x=sum(m=0)^(n) C(m) cos mx is an idedntity in x ...

    Text Solution

    |

  13. If sec alpha is the average of sec(alpha - 2beta) and sec(alpha + 2bet...

    Text Solution

    |

  14. If A, B and C are three values lying in [0, 2pi] for which tan theta =...

    Text Solution

    |

  15. The value of [ ( sin ""(pi)/(9)) (4+ sec""(pi)/(9))]^(2) is .

    Text Solution

    |

  16. ((sin 33^(@))/( sin 11^(@) sin 49^(@) sin 71^(@)))^(2) + (( cos 33^(@)...

    Text Solution

    |

  17. If f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3...

    Text Solution

    |

  18. The expression (1+sin22^@sin33^@sin35^@)/(cos^2 22^@+cos^2 33^@+cos^2 ...

    Text Solution

    |

  19. If A > 0, B > 0, and A + B = pi/3 then the maximum value of tan A tan...

    Text Solution

    |

  20. If ( sin ^(3) theta)/( sin ( 2theta+ alpha )) = ( cos ^(3) theta)/( co...

    Text Solution

    |