Home
Class 12
MATHS
If f( theta ) = sin ^(3)theta + sin ^(3)...

If `f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3)( theta + (4pi)/(3))` then the value of `f((pi)/(18)) + f((7pi)/(18)) ` is ___________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(\theta) \) given by: \[ f(\theta) = \sin^3 \theta + \sin^3 \left( \theta + \frac{2\pi}{3} \right) + \sin^3 \left( \theta + \frac{4\pi}{3} \right) \] We are required to find the value of \( f\left(\frac{\pi}{18}\right) + f\left(\frac{7\pi}{18}\right) \). ### Step 1: Calculate \( f\left(\frac{\pi}{18}\right) \) Substituting \( \theta = \frac{\pi}{18} \): \[ f\left(\frac{\pi}{18}\right) = \sin^3\left(\frac{\pi}{18}\right) + \sin^3\left(\frac{\pi}{18} + \frac{2\pi}{3}\right) + \sin^3\left(\frac{\pi}{18} + \frac{4\pi}{3}\right) \] Calculating the angles: 1. \( \frac{\pi}{18} + \frac{2\pi}{3} = \frac{\pi}{18} + \frac{12\pi}{18} = \frac{13\pi}{18} \) 2. \( \frac{\pi}{18} + \frac{4\pi}{3} = \frac{\pi}{18} + \frac{24\pi}{18} = \frac{25\pi}{18} \) So we have: \[ f\left(\frac{\pi}{18}\right) = \sin^3\left(\frac{\pi}{18}\right) + \sin^3\left(\frac{13\pi}{18}\right) + \sin^3\left(\frac{25\pi}{18}\right) \] ### Step 2: Simplify \( \sin^3\left(\frac{13\pi}{18}\right) \) and \( \sin^3\left(\frac{25\pi}{18}\right) \) Using the property \( \sin\left(\pi - x\right) = \sin x \): \[ \sin\left(\frac{13\pi}{18}\right) = \sin\left(\pi - \frac{5\pi}{18}\right) = \sin\left(\frac{5\pi}{18}\right) \] And for \( \sin\left(\frac{25\pi}{18}\right) \): \[ \sin\left(\frac{25\pi}{18}\right) = \sin\left(2\pi - \frac{7\pi}{18}\right) = -\sin\left(\frac{7\pi}{18}\right) \] Thus, \[ f\left(\frac{\pi}{18}\right) = \sin^3\left(\frac{\pi}{18}\right) + \sin^3\left(\frac{5\pi}{18}\right) - \sin^3\left(\frac{7\pi}{18}\right) \] ### Step 3: Calculate \( f\left(\frac{7\pi}{18}\right) \) Now substituting \( \theta = \frac{7\pi}{18} \): \[ f\left(\frac{7\pi}{18}\right) = \sin^3\left(\frac{7\pi}{18}\right) + \sin^3\left(\frac{7\pi}{18} + \frac{2\pi}{3}\right) + \sin^3\left(\frac{7\pi}{18} + \frac{4\pi}{3}\right) \] Calculating the angles: 1. \( \frac{7\pi}{18} + \frac{2\pi}{3} = \frac{7\pi}{18} + \frac{12\pi}{18} = \frac{19\pi}{18} \) 2. \( \frac{7\pi}{18} + \frac{4\pi}{3} = \frac{7\pi}{18} + \frac{24\pi}{18} = \frac{31\pi}{18} \) Thus, \[ f\left(\frac{7\pi}{18}\right) = \sin^3\left(\frac{7\pi}{18}\right) + \sin^3\left(\frac{19\pi}{18}\right) + \sin^3\left(\frac{31\pi}{18}\right) \] Using the properties of sine: \[ \sin\left(\frac{19\pi}{18}\right) = -\sin\left(\frac{\pi}{18}\right) \quad \text{and} \quad \sin\left(\frac{31\pi}{18}\right) = -\sin\left(\frac{7\pi}{18}\right) \] So we have: \[ f\left(\frac{7\pi}{18}\right) = \sin^3\left(\frac{7\pi}{18}\right) - \sin^3\left(\frac{\pi}{18}\right) - \sin^3\left(\frac{7\pi}{18}\right) \] ### Step 4: Combine the results Now we can add the two results: \[ f\left(\frac{\pi}{18}\right) + f\left(\frac{7\pi}{18}\right) = \left(\sin^3\left(\frac{\pi}{18}\right) + \sin^3\left(\frac{5\pi}{18}\right) - \sin^3\left(\frac{7\pi}{18}\right)\right) + \left(\sin^3\left(\frac{7\pi}{18}\right) - \sin^3\left(\frac{\pi}{18}\right) - \sin^3\left(\frac{7\pi}{18}\right)\right) \] This simplifies to: \[ f\left(\frac{\pi}{18}\right) + f\left(\frac{7\pi}{18}\right) = \sin^3\left(\frac{5\pi}{18}\right) \] ### Final Result Thus, the value of \( f\left(\frac{\pi}{18}\right) + f\left(\frac{7\pi}{18}\right) \) is: \[ \sin^3\left(\frac{5\pi}{18}\right) \]

To solve the problem, we need to evaluate the function \( f(\theta) \) given by: \[ f(\theta) = \sin^3 \theta + \sin^3 \left( \theta + \frac{2\pi}{3} \right) + \sin^3 \left( \theta + \frac{4\pi}{3} \right) \] We are required to find the value of \( f\left(\frac{\pi}{18}\right) + f\left(\frac{7\pi}{18}\right) \). ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Main|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Advanced|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a sinb theta . Find the value of |(b)/(a)| .

Show that 4 sin ((pi)/(3) - theta ) sin ((pi)/(3) + theta) =3-4 sin ^(2) theta

The maximum value of 5 sin theta+3 sin (theta + pi/3) + 3 is -

The function f(theta) = cos (pi sin^(2) theta) , is

For all theta, sin theta + sin(theta + pi)+sin (2pi + theta)=

If sin(pi cos theta)=cos(pi sin theta) , then sin 2theta=

Let f( theta) = ( cos theta - "cos" (pi)/(8))(cos theta - "cos" (3 pi)/(8))(cos theta - "cos" (5 pi)/(8) )(cos theta - "cos" (7pi)/(8)) then :

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

If theta in [(pi)/(2),3(pi)/(2)] then sin^(-1)(sin theta) equals

If 1 + sintheta + sin^2theta + sin^3theta +.. oo = 4 + 2sqrt3, 0 lt theta lt pi, theta != pi/2 then

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Numerical Value Type )
  1. If sin^(3)x cos3x+cos^(3)x sin 3x=3//8, then the value of sin 4x is

    Text Solution

    |

  2. The value of "cosec".(pi)/(18)-4 sin""(7pi)/(18) is

    Text Solution

    |

  3. If tanx+tan2x+tan3x=tanxtan2xtan3x then value of |sin3x+cos3x| is

    Text Solution

    |

  4. 16(costheta-cospi/8)(costheta-cos(3pi)/8)(costheta-cos(5pi)/8)(costhet...

    Text Solution

    |

  5. If (tan(I n6)dottan(I n2)dot"tan"(I n3))/(tan(I n6)-tan(I n2)-"tan"(I ...

    Text Solution

    |

  6. If cot(theta-alpha),3cottheta,"cot"(theta+alpha) are in A.P. and theta...

    Text Solution

    |

  7. The value of (2 sinx)/(sin 3x)+(tanx)/(tan3x)

    Text Solution

    |

  8. If cot^2Acot^2B=3, then the value of (2-cos2A)(2-cos2B) is

    Text Solution

    |

  9. The value of f(x)=x^4+4x^3+2x^2-4x+7, when x=cot(11pi)/8 is

    Text Solution

    |

  10. The value of sin^2 12^0+sin^2 21^0+sin^2 39^0+sin^2 48^0-sin^2 9^0-sin...

    Text Solution

    |

  11. Given that f(ntheta)=(2sin2theta)/(cos2theta-cos4ntheta), and f(theta)...

    Text Solution

    |

  12. Suppose sin^(3)x sin3x=sum(m=0)^(n) C(m) cos mx is an idedntity in x ...

    Text Solution

    |

  13. If sec alpha is the average of sec(alpha - 2beta) and sec(alpha + 2bet...

    Text Solution

    |

  14. If A, B and C are three values lying in [0, 2pi] for which tan theta =...

    Text Solution

    |

  15. The value of [ ( sin ""(pi)/(9)) (4+ sec""(pi)/(9))]^(2) is .

    Text Solution

    |

  16. ((sin 33^(@))/( sin 11^(@) sin 49^(@) sin 71^(@)))^(2) + (( cos 33^(@)...

    Text Solution

    |

  17. If f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3...

    Text Solution

    |

  18. The expression (1+sin22^@sin33^@sin35^@)/(cos^2 22^@+cos^2 33^@+cos^2 ...

    Text Solution

    |

  19. If A > 0, B > 0, and A + B = pi/3 then the maximum value of tan A tan...

    Text Solution

    |

  20. If ( sin ^(3) theta)/( sin ( 2theta+ alpha )) = ( cos ^(3) theta)/( co...

    Text Solution

    |