Home
Class 12
MATHS
Let cos (alpha+beta) = 4/5 and sin(alph...

Let ` cos (alpha+beta) = 4/5` and `sin(alpha-beta)=5/13 ` where `0<= alpha,beta<= pi/4` then find ` tan (2alpha)`

A

`(20)/(7)`

B

` ( 25)/(16) `

C

`(56)/(33)`

D

`(19)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( \tan(2\alpha) \) given that \( \cos(\alpha + \beta) = \frac{4}{5} \) and \( \sin(\alpha - \beta) = \frac{5}{13} \). ### Step 1: Find \( \tan(\alpha + \beta) \) Given \( \cos(\alpha + \beta) = \frac{4}{5} \), we can find \( \sin(\alpha + \beta) \) using the Pythagorean identity: \[ \sin^2(\theta) + \cos^2(\theta) = 1 \] Let \( \sin(\alpha + \beta) = y \). Then, \[ y^2 + \left(\frac{4}{5}\right)^2 = 1 \] Calculating \( \left(\frac{4}{5}\right)^2 \): \[ y^2 + \frac{16}{25} = 1 \] Subtracting \( \frac{16}{25} \) from both sides: \[ y^2 = 1 - \frac{16}{25} = \frac{25}{25} - \frac{16}{25} = \frac{9}{25} \] Taking the square root: \[ y = \sqrt{\frac{9}{25}} = \frac{3}{5} \] Thus, \[ \sin(\alpha + \beta) = \frac{3}{5} \] Now, we can find \( \tan(\alpha + \beta) \): \[ \tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] ### Step 2: Find \( \tan(\alpha - \beta) \) Given \( \sin(\alpha - \beta) = \frac{5}{13} \), we can find \( \cos(\alpha - \beta) \) using the Pythagorean identity: Let \( \cos(\alpha - \beta) = z \). Then, \[ \left(\frac{5}{13}\right)^2 + z^2 = 1 \] Calculating \( \left(\frac{5}{13}\right)^2 \): \[ \frac{25}{169} + z^2 = 1 \] Subtracting \( \frac{25}{169} \) from both sides: \[ z^2 = 1 - \frac{25}{169} = \frac{169}{169} - \frac{25}{169} = \frac{144}{169} \] Taking the square root: \[ z = \sqrt{\frac{144}{169}} = \frac{12}{13} \] Thus, \[ \cos(\alpha - \beta) = \frac{12}{13} \] Now, we can find \( \tan(\alpha - \beta) \): \[ \tan(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12} \] ### Step 3: Use the tangent addition formula to find \( \tan(2\alpha) \) We know: \[ \tan(2\alpha) = \tan((\alpha + \beta) + (\alpha - \beta)) = \frac{\tan(\alpha + \beta) + \tan(\alpha - \beta)}{1 - \tan(\alpha + \beta) \tan(\alpha - \beta)} \] Substituting the values we found: \[ \tan(2\alpha) = \frac{\frac{3}{4} + \frac{5}{12}}{1 - \left(\frac{3}{4} \cdot \frac{5}{12}\right)} \] ### Step 4: Simplify the numerator Finding a common denominator for the numerator: \[ \frac{3}{4} = \frac{9}{12} \] Thus, \[ \tan(2\alpha) = \frac{\frac{9}{12} + \frac{5}{12}}{1 - \frac{15}{48}} = \frac{\frac{14}{12}}{1 - \frac{15}{48}} \] ### Step 5: Simplify the denominator Calculating \( 1 - \frac{15}{48} \): \[ 1 = \frac{48}{48} \implies 1 - \frac{15}{48} = \frac{48 - 15}{48} = \frac{33}{48} \] ### Step 6: Final calculation Now substituting back into the equation: \[ \tan(2\alpha) = \frac{\frac{14}{12}}{\frac{33}{48}} = \frac{14}{12} \cdot \frac{48}{33} = \frac{14 \cdot 48}{12 \cdot 33} \] Simplifying \( \frac{14 \cdot 48}{12 \cdot 33} \): \[ = \frac{14 \cdot 4}{33} = \frac{56}{33} \] Thus, the final answer is: \[ \boxed{\frac{56}{33}} \]

To solve the problem, we need to find \( \tan(2\alpha) \) given that \( \cos(\alpha + \beta) = \frac{4}{5} \) and \( \sin(\alpha - \beta) = \frac{5}{13} \). ### Step 1: Find \( \tan(\alpha + \beta) \) Given \( \cos(\alpha + \beta) = \frac{4}{5} \), we can find \( \sin(\alpha + \beta) \) using the Pythagorean identity: \[ \sin^2(\theta) + \cos^2(\theta) = 1 ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Advanced|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Archives (Multiple correct Answers Type) (JEE Advanced)|2 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Let cos(alpha+beta)""=4/5 and let sin (alpha-beta)""=5/(13) where 0lt=alpha,betalt=pi/4 , then t a n""2alpha= (1) (56)/(33) (2) (19)/(12) (3) (20)/7 (4) (25)/(16)

If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) , where alpha lie between 0 and (pi)/(4) , then find that value of tan2alpha .

If cos(alpha+beta)=0 then sin(alpha+2beta)=

If cos(alpha+beta)=4/5; sin(alpha-beta)=5/13 and alpha,beta lie between 0&pi/4 then find the value of tan2alpha

If cos (alpha + beta) = (4)/(5), sin (alpha - beta) = (5)/(13) and alpha and beta lie between 0 and (pi)/(4) , find tan 2 alpha .

It cos(alpha+beta)=4/5,sin(alpha-beta)=5/(13)a n dalpha,beta lie between 0a n dpi/4 , prove that tan2alpha=(56)/(33)

It cos(alpha+beta)=4/5,sin(alpha-beta)=5/(13)a n dalpha,beta lie between 0a n dpi/4 , prove that tan2alpha=(56)/(33)

If sin (alpha + beta) = 4/5 , sin (alpha -beta) = (5)/(13), alpha + beta , alpha - beta being acute angles prove that tan 2 alpha = (63)/(16).

If 0 lt beta lt alpha lt pi//4, cos(alpha+beta)=3//5 and cos(alpha-beta)=4//5 , then evaluate sin 2alpha .

If alpha and beta be between 0 and (pi)/(2)and if cos(alpha+beta)=(12)/(13) and sin(alpha-beta)=3/5, then sin 2 alpha is equal to