Home
Class 12
MATHS
In a DeltaPQR. if 3 sinP +4 cosQ=6 and 4...

In a `DeltaPQR`. if `3 sinP +4 cosQ=6` and `4sinQ+3cosP=1`, then the angle `R` is equal to:

A

`( 5pi)/(6)`

B

`(pi)/(6)`

C

`(pi)/(4)`

D

`(3pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( 3 \sin P + 4 \cos Q = 6 \) (Equation 1) 2. \( 4 \sin Q + 3 \cos P = 1 \) (Equation 2) ### Step 1: Square both equations and add them. Squaring Equation 1: \[ (3 \sin P + 4 \cos Q)^2 = 6^2 \] Expanding this: \[ 9 \sin^2 P + 24 \sin P \cos Q + 16 \cos^2 Q = 36 \quad (1) \] Squaring Equation 2: \[ (4 \sin Q + 3 \cos P)^2 = 1^2 \] Expanding this: \[ 16 \sin^2 Q + 24 \sin Q \cos P + 9 \cos^2 P = 1 \quad (2) \] ### Step 2: Add the two squared equations. Adding (1) and (2): \[ 9 \sin^2 P + 16 \cos^2 Q + 16 \sin^2 Q + 9 \cos^2 P + 24 (\sin P \cos Q + \sin Q \cos P) = 36 + 1 \] This simplifies to: \[ 9 (\sin^2 P + \cos^2 P) + 16 (\sin^2 Q + \cos^2 Q) + 24 (\sin P \cos Q + \sin Q \cos P) = 37 \] Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \): \[ 9(1) + 16(1) + 24 (\sin P \cos Q + \sin Q \cos P) = 37 \] This simplifies to: \[ 25 + 24 (\sin P \cos Q + \sin Q \cos P) = 37 \] Subtracting 25 from both sides: \[ 24 (\sin P \cos Q + \sin Q \cos P) = 12 \] Dividing by 24: \[ \sin P \cos Q + \sin Q \cos P = \frac{1}{2} \] ### Step 3: Use the sine addition formula. Using the sine addition formula: \[ \sin(P + Q) = \sin P \cos Q + \cos P \sin Q \] We have: \[ \sin(P + Q) = \frac{1}{2} \] ### Step 4: Determine \( P + Q \). The equation \( \sin(P + Q) = \frac{1}{2} \) implies: \[ P + Q = \frac{\pi}{6} \quad \text{or} \quad P + Q = \frac{5\pi}{6} \] ### Step 5: Determine angle \( R \). Since the angles in a triangle sum to \( \pi \): \[ P + Q + R = \pi \] Thus: \[ R = \pi - (P + Q) \] #### Case 1: If \( P + Q = \frac{\pi}{6} \) \[ R = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \] #### Case 2: If \( P + Q = \frac{5\pi}{6} \) \[ R = \pi - \frac{5\pi}{6} = \frac{\pi}{6} \] ### Step 6: Check the validity of the cases. 1. For \( R = \frac{5\pi}{6} \): - \( P + Q = \frac{\pi}{6} \) leads to contradictions in the original equations. 2. For \( R = \frac{\pi}{6} \): - \( P + Q = \frac{5\pi}{6} \) is valid. ### Conclusion: Thus, the angle \( R \) is: \[ \boxed{\frac{\pi}{6}} \]

To solve the problem, we start with the given equations: 1. \( 3 \sin P + 4 \cos Q = 6 \) (Equation 1) 2. \( 4 \sin Q + 3 \cos P = 1 \) (Equation 2) ### Step 1: Square both equations and add them. Squaring Equation 1: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Advanced|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Archives (Multiple correct Answers Type) (JEE Advanced)|2 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In a DeltaP Q R , if 3sinP+4cosQ=6 and 4sinQ+3cosP=1 , then the angle R is equal to (1) (5pi)/6 (2) pi/6 (3) pi/4 (4) (3pi)/4

In a triangle ABC, 3sinA + 4cosB = 6 and 4sinB + 3cosA = 1. Find the measure of angle C.

Let a = 6, b = 3 and cos (A -B) = (4)/(5) Angle C is equal to

In a DeltaPQR , if /_P=90^(@) and /_Q=/_R , find the measures of each of the equal angles of the triangle.

Let A=[(1, 2),(3, 4)] and B=[(p,q),(r,s)] are two matrices such that AB = BA and r ne 0 , then the value of (3p-3s)/(5q-4r) is equal to

If x=(sin^3P)/cos^2P,y=cos^3P/sin^2P" and " sinP+cosP=1/2 then find the value of x + y.

If Q(0, -1, -3) is the image of the point P in the plane 3x-y+4z=2 and R is the point (3, -1, -2), then the area (in sq units) of DeltaPQR is

If A is 3xx3 matrix and |A|=4 , then |A^(-1)| is equal to

In triangle A B C , if cosA+cosB+cosC=7/4, t h e n R/r is equal to 3/4 (b) 4/3 (c) 2/3 (d) 3/2

If A={1,2,3,4,5,6) and B={2,4,5,6,8,9,10} then A DeltaB is equal to